
Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Formal Languages and Linguistics

Pascal Amsili

Sorbonne Nouvelle, Lattice (CNRS/ENS-PSL/SN)

Cogmaster, september 2022

1 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Regular expressions

Overview

Formal Languages

Regular Languages
Definition
Regular expressions
Automata
Properties

Formal Grammars

Formal complexity of Natural Languages

29 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Regular expressions

Regular expressions

It is common to use the 3 rational operations:
I union
I product
I Kleene star

to characterize certain languages...

({a} [{b})⇤.{c} = {c , ac , abc , bc , . . . , baabaac , . . .}
(simplified notation (a|b)⇤c — regular expressions)

... but not all languages can be thus characterized.

30 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Regular expressions

Regular expressions

It is common to use the 3 rational operations:
I union
I product
I Kleene star

to characterize certain languages...

({a} [{b})⇤.{c} = {c , ac , abc , bc , . . . , baabaac , . . .}
(simplified notation (a|b)⇤c — regular expressions)

... but not all languages can be thus characterized.

30 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Regular expressions

Regular expressions

It is common to use the 3 rational operations:
I union
I product
I Kleene star

to characterize certain languages...

({a} [{b})⇤.{c} = {c , ac , abc , bc , . . . , baabaac , . . .}
(simplified notation (a|b)⇤c — regular expressions)

... but not all languages can be thus characterized.

30 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Regular expressions

Def. 9 (Rational Language)

A rational language on ⌃ is a subset of ⌃⇤ inductively defined thus:
I ; and {"} are rational languages ;
I for all a 2 X , the singleton {a} is a rational language ;
I for all g and h rational, the sets g [h, g .h and g⇤ are rational

languages.

31 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Automata

Overview

Formal Languages

Regular Languages
Definition
Regular expressions
Automata
Properties

Formal Grammars

Formal complexity of Natural Languages

32 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Automata

Metaphoric definition

$

33 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Automata

Formal definition

Def. 10 (Finite deterministic automaton (FDA))

A finite state deterministic automaton A is defined by :
A = hQ,⌃, q0,F , �i

Q is a finite set of states
⌃ is an alphabet
q0 is a distinguished state, the initial state,
F is a subset of Q, whose members are called

final/terminal states
� is a mapping fonction from Q ⇥ ⌃ to Q.

Notation �(q, a) = r .

34 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Automata

Example

Let us consider the (finite) language {aa, ab, abb, acba, accb}.
The following automaton recognizes this langage: hQ,⌃, q0,F , �i,
avec Q = {1, 2, 3, 4, 5, 6, 7}, ⌃ = {a, b, c}, q0 = 1, F = {3, 4}, and
� is thus defined:
� : (1,a) 7! 2

(2,a) 7! 3

(2,b) 7! 4

(2,c) 7! 5

(4,b) 7! 3

(5,b) 7! 6

(5,c) 7! 7

(6,a) 7! 3

(7,b) 7! 3

b

1 76

5

4

3

2
a

c

b
a

c

b

b

a
a b c

! 1 2
2 3 4 5

 3
 4 3

5 6 7
6 3
7 3

35 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Automata

Recognition

Recognition is defined as the existence of a sequence of states
defined in the following way. Such a sequence is called a path in
the automaton.

Def. 11 (Recognition)

A word a1a2...an is recognized/accepted by an automaton iff
there exists a sequence k0, k1, ..., kn of states such that:

k0 = q0
kn 2 F
8i 2 [1, n], �(ki�1, ai) = ki

36 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Automata

Example

b

a a

a,c

a,ca,b

c

b

c

b

37 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Automata

Exercices

Let ⌃ = {a, b, c}. Give deterministic finite state automata that
accept the following languages:

1. The set of words with an even length.
2. The set of words where the number of occurrences of b is

divisible by 3.
3. The set of words ending with a b.
4. The set of words not ending with a b.
5. The set of words non empty not ending with a b.
6. The set of words comprising at least a b.
7. The set of words comprising at most a b.
8. The set of words comprising exactly one b.

38 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Automata

AnswersUniversité Paris Diderot – LI0636 – 13/14 Ch2. Automates

1 2 3 4

a,b,c

a,b,c

a,b,c

a,b,c

a,b,c

b

a,c

a,c b
b

a,c

a,c b

5 6 7 8

b

a,c

a,c b
b

a,c a,b,c
b

a,c a,c
b

a,c a,c

ListeCpxAFDC

31
Soit A = {a, b, c}. Donner des automates déterministes complets reconnaissant les lan-

gages suivants :
1. L’ensemble des mots contenant au moins un a et dont la première occurence de a

n’est pas suivie par un c.
2. L’ensemble des mots comportant au moins 3 lettres et dont la troisième lettre à

partir de la fin est un a ou un c.ListeCpxAFDC-Answer
. 31 (p. 23) .
Le premier est assez simple ; le second : seule méthode trouvée : passer par un automate
non déterministe (il vaut mieux qu’il ne soit pas complet), puis le déterminiser. Version
trouvée (à vérifier) :

a (et c) b
1 1,2 1

1,2 1,2,3 1,3
1,2,3 1,2,3,4 1,3,4

1,3 1,2,4 1,4
1,2,3,4 1,2,3,4 1,3,4

1,3,4 1,2,4 1,4
1,2,4 1,2,3 1,3

1,4 1,2 1exIntersection

32
Soit � = {a, b, c}.

1. Proposer un automate déterministe (pas nécessairement complet) qui reconnaît le
langage sur �⇤ de tous les mots qui commencent par c et se terminent par c.

2. Proposer un automate déterministe qui reconnaît tous les mots de �⇤ qui com-
prennent le motif abb⇤a.

3. Proposer un automate (pas nécessairement complet) qui reconnaît tous les mots de
�⇤ qui comprennent le motif abb⇤a et commencent et se terminent par c.exIntersection-Answer

. 32 (p. 23) .
Soit � = {a, b, c}.

1. Proposer un automate déterministe (pas nécessairement complet) qui reconnaît le langage
sur �⇤ de tous les mots qui commencent par c et se terminent par c.

25

39 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Properties

Overview

Formal Languages

Regular Languages
Definition
Regular expressions
Automata
Properties

Formal Grammars

Formal complexity of Natural Languages

40 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Properties

Ways of non-determinism

A word is recognized if there exists a path in the automaton. It is
not excluded however that there be several paths for one word: in
that case, the automaton is non deterministic.
What are the sources of non determinism?
I �(a, S1) = {S2, S3}
I “spontaneous transition” = "-transition

41 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Properties

Equivalence theorems

For any non-deterministic automaton, it is possible to design a
complete deterministic automaton that recognizes the same
language.
Proofs: algorithms (constructive proofs)
First “remove” "-transitions, then “remove” multiple transitions.

42 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Properties

Closure (1)

Regular languages are closed under various operations: if the
languages L and L0 are regular, so are:
I L [L0 (union); L.L0 (product); L⇤ (Kleene star)

(rational operations)

43 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Properties

Union of regular languages: an example

4

a

a

a

b

b

b

a,b

1

2

3

[
a,b

a

a1

2

3

4

b

b

= 9

a

a

a

b

b

b

a,b

1

2

3

4

ε

ε

ε

εa

a 4’

b

b a,b

1’

2’

3’

0

44 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Properties

Rational operations

ε

ε

a
a

RR’

ε

R|R’

R*

ε

ε

ε

ε

ε

45 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Properties

Closure (2)

Regular languages are closed under various operations: if the
languages L and L0 are regular, so are:
I L [L0 (union); L.L0 (product); L⇤ (Kleene star)

(rational operations)
! for every rational expression describing a language , there is
a FSA that recognizes L

and vice-versa
I L \ L0 (intersection); L (complement)
I . . .

46 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Properties

Closure (2)

Regular languages are closed under various operations: if the
languages L and L0 are regular, so are:
I L [L0 (union); L.L0 (product); L⇤ (Kleene star)

(rational operations)
! for every rational expression describing a language , there is
a FSA that recognizes L and vice-versa

I L \ L0 (intersection); L (complement)
I . . .

46 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Properties

Closure (2)

Regular languages are closed under various operations: if the
languages L and L0 are regular, so are:
I L [L0 (union); L.L0 (product); L⇤ (Kleene star)

(rational operations)
! for every rational expression describing a language , there is
a FSA that recognizes L and vice-versa

I L \ L0 (intersection); L (complement)
I . . .

46 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Properties

Intersection of regular languages

Algorithmic proof
Deterministic complete automata

L1 a b
! 1 2 4

2 4 3
 3 3 3

4 4 4

L2 a b
$ 1 2 5

2 5 3
3 4 5
4 1 4
5 5 5

L1 \ L2 a b
! (1,1) (2,2) (4,5)

(2,2) (4,5) (3,3)
(4,5) (4,5) (4,5)
(3,3) (3,4) (3,5)
(3,4) (3,1) (3,4)

 (3,1) (3,2) (3,4)
(3,2) (3,4) (3,3)
(3,5) (3,5) (3,5)

47 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Properties

Complement of a regular language

Deterministic complete automata

completed complemented

c

a

b

b

c

1 2 3

4

a

c

a

b

b

c

1 2 3

4

a cb
c

c

a b

a

a b

c

a

b

b

c

1 2 3

4

a cb
c

c

a b

a

a b

48 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Properties

Pumping lemma: Intuition

Take an automaton with k states.

If the accepted language is infinite,
then some words have more than k letters.
Therefore, at least one state has to be “gone through” several times.
That means there is a loop on that state.
Then making any number of loops will end up with a word in L.

) Pumping lemma

49 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Properties

Pumping lemma: Intuition

Take an automaton with k states.
If the accepted language is infinite,
then some words have more than k letters.

Therefore, at least one state has to be “gone through” several times.
That means there is a loop on that state.
Then making any number of loops will end up with a word in L.

) Pumping lemma

49 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Properties

Pumping lemma: Intuition

Take an automaton with k states.
If the accepted language is infinite,
then some words have more than k letters.
Therefore, at least one state has to be “gone through” several times.

That means there is a loop on that state.
Then making any number of loops will end up with a word in L.

) Pumping lemma

49 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Properties

Pumping lemma: Intuition

Take an automaton with k states.
If the accepted language is infinite,
then some words have more than k letters.
Therefore, at least one state has to be “gone through” several times.
That means there is a loop on that state.

Then making any number of loops will end up with a word in L.

) Pumping lemma

49 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Properties

Pumping lemma: Intuition

Take an automaton with k states.
If the accepted language is infinite,
then some words have more than k letters.
Therefore, at least one state has to be “gone through” several times.
That means there is a loop on that state.
Then making any number of loops will end up with a word in L.

) Pumping lemma

49 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Properties

Pumping lemma: definition

Def. 12 (Pumping Lemma)

Let L be an infinite regular language.
There exists an integer k such that:

8x 2 L, |x | > k , 9u, v ,w such that x = uvw , with:
(i) |v | � 1
(ii) |uv |  k
(iii) 8i � 0, uv iw 2 L

50 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Properties

Pumping lemma: Illustration

Let’s illustrate the lemma with a language which trivialy satisfies it:
a⇤bc .
Let k = 3, the work abc is long enough, and can be decomposed:
" a b c
u v w

The three properties of the lemma are satisfied:
I |v | � 1 (v = a)
I |uv |  k (uv = a)
I 8i 2 N, uv iw(= aibc) belongs to the language by definition.

51 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Properties

Pumping lemma: Consequences

The pumping lemma is a tool to prove that a language is not

regular.
L regular) pumping lemma (8i , uv iw 2 L)
pumping lemma 6) L regular
NO pumping lemma) L NOT regular

to prove that L is
regular provide an automaton

not regular show that the pumping lemma does not apply

52 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Properties

Pumping lemma: Consequences

The pumping lemma is a tool to prove that a language is not

regular.
L regular) pumping lemma (8i , uv iw 2 L)
pumping lemma 6) L regular
NO pumping lemma) L NOT regular

to prove that L is
regular provide an automaton

not regular show that the pumping lemma does not apply

52 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Properties

Pumping lemma: Consequences

Def. 13 (Consequences)

Let A be a k state automaton:
1. L(A) 6= ; iff A recognises (at least) one word u s.t. |u| < k .
2. L(A) is infinite iff A recognises (at least) one word u t.q.

k  |u| < 2k .

53 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Properties

Results: expressivity

I Any finite langage is regular
I anbm is regular
I anbn is not regular
I wwR is not regular (R : reverse word)

54 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Properties

Decidable problems
• The “word problem” w

?
2 L(A) is decidable.

) A computation on an automaton always stops.

• The “emptiness problem” L(A)
?
= ; is decidable.

) It’s enough to test all possible words of length  k , where k is the

number of states.

• The “finiteness problem” L(A)
?
is finite is decidable.

) Test all possible words whose length is between k and 2k . If there

exists u s.t. k < |u| < 2k and u 2 L(A), then L(A) is infinite.

• The “equivalence problem” L(A)
?
= L(A0) is decidable.

) it boils down to answering the question:⇣
L(A) \ L(A0)

⌘
[
⇣
L(A0) \ L(A)

⌘
= ;

55 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Properties

Decidable problems
• The “word problem” w

?
2 L(A) is decidable.

) A computation on an automaton always stops.

• The “emptiness problem” L(A)
?
= ; is decidable.

) It’s enough to test all possible words of length  k , where k is the

number of states.

• The “finiteness problem” L(A)
?
is finite is decidable.

) Test all possible words whose length is between k and 2k . If there

exists u s.t. k < |u| < 2k and u 2 L(A), then L(A) is infinite.

• The “equivalence problem” L(A)
?
= L(A0) is decidable.

) it boils down to answering the question:⇣
L(A) \ L(A0)

⌘
[
⇣
L(A0) \ L(A)

⌘
= ;

55 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Properties

Decidable problems
• The “word problem” w

?
2 L(A) is decidable.

) A computation on an automaton always stops.

• The “emptiness problem” L(A)
?
= ; is decidable.

) It’s enough to test all possible words of length  k , where k is the

number of states.

• The “finiteness problem” L(A)
?
is finite is decidable.

) Test all possible words whose length is between k and 2k . If there

exists u s.t. k < |u| < 2k and u 2 L(A), then L(A) is infinite.

• The “equivalence problem” L(A)
?
= L(A0) is decidable.

) it boils down to answering the question:⇣
L(A) \ L(A0)

⌘
[
⇣
L(A0) \ L(A)

⌘
= ;

55 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Properties

Decidable problems
• The “word problem” w

?
2 L(A) is decidable.

) A computation on an automaton always stops.

• The “emptiness problem” L(A)
?
= ; is decidable.

) It’s enough to test all possible words of length  k , where k is the

number of states.

• The “finiteness problem” L(A)
?
is finite is decidable.

) Test all possible words whose length is between k and 2k . If there

exists u s.t. k < |u| < 2k and u 2 L(A), then L(A) is infinite.

• The “equivalence problem” L(A)
?
= L(A0) is decidable.

) it boils down to answering the question:⇣
L(A) \ L(A0)

⌘
[
⇣
L(A0) \ L(A)

⌘
= ;

55 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Properties

À quoi ça sert?

Why would you want to define (formally) a language?
I to formulate a request to a search engine (mang.*)
I to associate actions to (classes of) words (e.g., transducers)

I formal languages (math. expressions, programming

languages...)

I artificial (interface) languages

I (subpart of) natural languages

56 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Overview

Formal Languages

Regular Languages

Formal Grammars
Definition
Language classes

Formal complexity of Natural Languages

57 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Formal grammar

Def. 14 ((Formal) Grammar)

A formal grammar is defined by h⌃,N, S ,Pi where
I ⌃ is an alphabet
I N is a disjoint alphabet (non-terminal vocabulary)
I S 2 V is a distinguished element of N, called the axiom
I P is a set of « production rules », namely a subset of the

cartesian product (⌃ [N)⇤N(⌃ [N)⇤ ⇥ (⌃ [N)⇤.

58 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Examples

h⌃,N, S ,Pi

G0 =

*

{joe, sam, sleeps}, {N,V , S}, S ,

8
>><

>>:

9
>>=

>>;

+
}

59 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Examples

h⌃,N, S ,Pi

G0 =

*
{joe, sam, sleeps},

{N,V , S}, S ,

8
>><

>>:

9
>>=

>>;

+
}

59 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Examples

h⌃,N, S ,Pi

G0 =

*
{joe, sam, sleeps}, {N,V , S},

S ,

8
>><

>>:

9
>>=

>>;

+
}

59 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Examples

h⌃,N, S ,Pi

G0 =

*
{joe, sam, sleeps}, {N,V , S}, S ,

8
>><

>>:

9
>>=

>>;

+
}

59 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Examples

h⌃,N, S ,Pi

G0 =

*
{joe, sam, sleeps}, {N,V , S}, S ,

8
>><

>>:

(N, joe)
(N, sam)
(V , sleeps)
(S ,N V)

9
>>=

>>;

+
}

59 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Examples

h⌃,N, S ,Pi

G0 =

*
{joe, sam, sleeps}, {N,V , S}, S ,

8
>><

>>:

N ! joe
N ! sam
V ! sleeps
S ! N V

9
>>=

>>;

+
}

59 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Examples (cont’d)

G1 =

*
{jean, dort}, {Np, SN, SV ,V , S}, S ,

8
>>>><

>>>>:

S ! SN SV
SN ! Np
SV ! V
Np ! jean
V ! dort

9
>>>>=

>>>>;

+
}

G2 = h{(,)}, {S}, S , {S �! " | (S)S}i

60 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Notation

G3 : E �! E + E
| E ⇥ E
| (E)
| F

F �! 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

G3 = h{+,⇥, (,), 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, {E ,F},E , {. . .}i

G4 = E ! E + T | T ,T ! T ⇥ F | F ,F ! (E) | a

61 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Notation

G3 : E �! E + E
| E ⇥ E
| (E)
| F

F �! 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
G3 = h{+,⇥, (,), 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, {E ,F},E , {. . .}i

G4 = E ! E + T | T ,T ! T ⇥ F | F ,F ! (E) | a

61 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Notation

G3 : E �! E + E
| E ⇥ E
| (E)
| F

F �! 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
G3 = h{+,⇥, (,), 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, {E ,F},E , {. . .}i

G4 = E ! E + T | T ,T ! T ⇥ F | F ,F ! (E) | a

61 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Immediate Derivation

Def. 15 (Immediate derivation)

Let G = hX ,V , S ,Pi a grammar, (f , g) 2 (X [V)⇤ two “words”,
r 2 P a production rule, such that r : A �! u (u 2 (X [V)⇤).

• f derives into g (immediate derivation) with the rule r
(noted f

r�! g) iff
9v ,w s.t. f = vAw and g = vuw

• f derives into g (immediate derivation) in the grammar G
(noted f

G�! g) iff
9r 2 P s.t. f

r�! g .

62 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Derivation

Def. 16 (Derivation)

f
G⇤�! g if f = g or

9f0, f1, f2, ..., fn s.t. f0 = f
fn = g

8i 2 [1, n] : fi�1
G�! fi

An example with G0:
N V joe N

�! sam V joe N �! sam V joe joe or
sam V joe sam or
sam sleeps joe N or
. . .

63 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Derivation

Def. 16 (Derivation)

f
G⇤�! g if f = g or

9f0, f1, f2, ..., fn s.t. f0 = f
fn = g

8i 2 [1, n] : fi�1
G�! fi

An example with G0:
N V joe N �! sam V joe N

�! sam V joe joe or
sam V joe sam or
sam sleeps joe N or
. . .

63 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Derivation

Def. 16 (Derivation)

f
G⇤�! g if f = g or

9f0, f1, f2, ..., fn s.t. f0 = f
fn = g

8i 2 [1, n] : fi�1
G�! fi

An example with G0:
N V joe N �! sam V joe N �! sam V joe joe or

sam V joe sam or
sam sleeps joe N or
. . .

63 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Derivation

Def. 16 (Derivation)

f
G⇤�! g if f = g or

9f0, f1, f2, ..., fn s.t. f0 = f
fn = g

8i 2 [1, n] : fi�1
G�! fi

An example with G0:
N V joe N �! sam V joe N �! sam V joe joe or

sam V joe sam or

sam sleeps joe N or
. . .

63 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Derivation

Def. 16 (Derivation)

f
G⇤�! g if f = g or

9f0, f1, f2, ..., fn s.t. f0 = f
fn = g

8i 2 [1, n] : fi�1
G�! fi

An example with G0:
N V joe N �! sam V joe N �! sam V joe joe or

sam V joe sam or
sam sleeps joe N or
. . .

63 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Endpoint of a derivation

G3 : E �! E + E
| E ⇥ E
| (E)
| F

F �! 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

An example with G3:

E ⇥ E

�! F ⇥ E �! 3⇥ E �! 3⇥ (E) �! 3⇥ (E + E) �!
3⇥ (E + F) �! 3⇥ (E + 4) �! 3⇥ (F + 4) �! 3⇥ (5+ 4) �!|

64 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Endpoint of a derivation

G3 : E �! E + E
| E ⇥ E
| (E)
| F

F �! 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

An example with G3:

E ⇥ E �! F ⇥ E

�! 3⇥ E �! 3⇥ (E) �! 3⇥ (E + E) �!
3⇥ (E + F) �! 3⇥ (E + 4) �! 3⇥ (F + 4) �! 3⇥ (5+ 4) �!|

64 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Endpoint of a derivation

G3 : E �! E + E
| E ⇥ E
| (E)
| F

F �! 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

An example with G3:

E ⇥ E �! F ⇥ E �! 3⇥ E

�! 3⇥ (E) �! 3⇥ (E + E) �!
3⇥ (E + F) �! 3⇥ (E + 4) �! 3⇥ (F + 4) �! 3⇥ (5+ 4) �!|

64 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Endpoint of a derivation

G3 : E �! E + E
| E ⇥ E
| (E)
| F

F �! 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

An example with G3:

E ⇥ E �! F ⇥ E �! 3⇥ E �! 3⇥ (E)

�! 3⇥ (E + E) �!
3⇥ (E + F) �! 3⇥ (E + 4) �! 3⇥ (F + 4) �! 3⇥ (5+ 4) �!|

64 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Endpoint of a derivation

G3 : E �! E + E
| E ⇥ E
| (E)
| F

F �! 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

An example with G3:

E ⇥ E �! F ⇥ E �! 3⇥ E �! 3⇥ (E) �! 3⇥ (E + E)

�!
3⇥ (E + F) �! 3⇥ (E + 4) �! 3⇥ (F + 4) �! 3⇥ (5+ 4) �!|

64 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Endpoint of a derivation

G3 : E �! E + E
| E ⇥ E
| (E)
| F

F �! 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

An example with G3:

E ⇥ E �! F ⇥ E �! 3⇥ E �! 3⇥ (E) �! 3⇥ (E + E) �!
3⇥ (E + F)

�! 3⇥ (E + 4) �! 3⇥ (F + 4) �! 3⇥ (5+ 4) �!|

64 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Endpoint of a derivation

G3 : E �! E + E
| E ⇥ E
| (E)
| F

F �! 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

An example with G3:

E ⇥ E �! F ⇥ E �! 3⇥ E �! 3⇥ (E) �! 3⇥ (E + E) �!
3⇥ (E + F) �! 3⇥ (E + 4)

�! 3⇥ (F + 4) �! 3⇥ (5+ 4) �!|

64 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Endpoint of a derivation

G3 : E �! E + E
| E ⇥ E
| (E)
| F

F �! 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

An example with G3:

E ⇥ E �! F ⇥ E �! 3⇥ E �! 3⇥ (E) �! 3⇥ (E + E) �!
3⇥ (E + F) �! 3⇥ (E + 4) �! 3⇥ (F + 4)

�! 3⇥ (5+ 4) �!|

64 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Endpoint of a derivation

G3 : E �! E + E
| E ⇥ E
| (E)
| F

F �! 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

An example with G3:

E ⇥ E �! F ⇥ E �! 3⇥ E �! 3⇥ (E) �! 3⇥ (E + E) �!
3⇥ (E + F) �! 3⇥ (E + 4) �! 3⇥ (F + 4) �! 3⇥ (5+ 4)

�!|

64 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Endpoint of a derivation

G3 : E �! E + E
| E ⇥ E
| (E)
| F

F �! 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

An example with G3:

E ⇥ E �! F ⇥ E �! 3⇥ E �! 3⇥ (E) �! 3⇥ (E + E) �!
3⇥ (E + F) �! 3⇥ (E + 4) �! 3⇥ (F + 4) �! 3⇥ (5+ 4) �!|

64 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Engendered language
Def. 17 (Language engendered by a word)

Let f 2 (⌃ [N)⇤.
LG(f) = {g 2 X ⇤/f

G⇤�! g}

Def. 18 (Language engendered by a grammar)

The language engendered by a grammar G is the set of words of ⌃⇤

derived from the axiom.
LG = LG(S)

For instance () 2 LG2 : S ! (S)S ! ()S ! ()
as well as ((())), ()()(), ((()()())). . .
but)()(62 LG2 , even though the following is a licit derivation :
)S(!)(S)S(!)()S(!)()(
for there is no way to arrive at)S(starting with S .

65 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Engendered language
Def. 17 (Language engendered by a word)

Let f 2 (⌃ [N)⇤.
LG(f) = {g 2 X ⇤/f

G⇤�! g}

Def. 18 (Language engendered by a grammar)

The language engendered by a grammar G is the set of words of ⌃⇤

derived from the axiom.
LG = LG(S)

For instance () 2 LG2 :

S ! (S)S ! ()S ! ()
as well as ((())), ()()(), ((()()())). . .
but)()(62 LG2 , even though the following is a licit derivation :
)S(!)(S)S(!)()S(!)()(
for there is no way to arrive at)S(starting with S .

65 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Engendered language
Def. 17 (Language engendered by a word)

Let f 2 (⌃ [N)⇤.
LG(f) = {g 2 X ⇤/f

G⇤�! g}

Def. 18 (Language engendered by a grammar)

The language engendered by a grammar G is the set of words of ⌃⇤

derived from the axiom.
LG = LG(S)

For instance () 2 LG2 : S ! (S)S

! ()S ! ()
as well as ((())), ()()(), ((()()())). . .
but)()(62 LG2 , even though the following is a licit derivation :
)S(!)(S)S(!)()S(!)()(
for there is no way to arrive at)S(starting with S .

65 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Engendered language
Def. 17 (Language engendered by a word)

Let f 2 (⌃ [N)⇤.
LG(f) = {g 2 X ⇤/f

G⇤�! g}

Def. 18 (Language engendered by a grammar)

The language engendered by a grammar G is the set of words of ⌃⇤

derived from the axiom.
LG = LG(S)

For instance () 2 LG2 : S ! (S)S ! ()S

! ()
as well as ((())), ()()(), ((()()())). . .
but)()(62 LG2 , even though the following is a licit derivation :
)S(!)(S)S(!)()S(!)()(
for there is no way to arrive at)S(starting with S .

65 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Engendered language
Def. 17 (Language engendered by a word)

Let f 2 (⌃ [N)⇤.
LG(f) = {g 2 X ⇤/f

G⇤�! g}

Def. 18 (Language engendered by a grammar)

The language engendered by a grammar G is the set of words of ⌃⇤

derived from the axiom.
LG = LG(S)

For instance () 2 LG2 : S ! (S)S ! ()S ! ()

as well as ((())), ()()(), ((()()())). . .
but)()(62 LG2 , even though the following is a licit derivation :
)S(!)(S)S(!)()S(!)()(
for there is no way to arrive at)S(starting with S .

65 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Engendered language
Def. 17 (Language engendered by a word)

Let f 2 (⌃ [N)⇤.
LG(f) = {g 2 X ⇤/f

G⇤�! g}

Def. 18 (Language engendered by a grammar)

The language engendered by a grammar G is the set of words of ⌃⇤

derived from the axiom.
LG = LG(S)

For instance () 2 LG2 : S ! (S)S ! ()S ! ()
as well as ((())), ()()(), ((()()())). . .

but)()(62 LG2 , even though the following is a licit derivation :
)S(!)(S)S(!)()S(!)()(
for there is no way to arrive at)S(starting with S .

65 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Engendered language
Def. 17 (Language engendered by a word)

Let f 2 (⌃ [N)⇤.
LG(f) = {g 2 X ⇤/f

G⇤�! g}

Def. 18 (Language engendered by a grammar)

The language engendered by a grammar G is the set of words of ⌃⇤

derived from the axiom.
LG = LG(S)

For instance () 2 LG2 : S ! (S)S ! ()S ! ()
as well as ((())), ()()(), ((()()())). . .
but)()(62 LG2 , even though the following is a licit derivation :

)S(!)(S)S(!)()S(!)()(
for there is no way to arrive at)S(starting with S .

65 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Engendered language
Def. 17 (Language engendered by a word)

Let f 2 (⌃ [N)⇤.
LG(f) = {g 2 X ⇤/f

G⇤�! g}

Def. 18 (Language engendered by a grammar)

The language engendered by a grammar G is the set of words of ⌃⇤

derived from the axiom.
LG = LG(S)

For instance () 2 LG2 : S ! (S)S ! ()S ! ()
as well as ((())), ()()(), ((()()())). . .
but)()(62 LG2 , even though the following is a licit derivation :
)S(!

)(S)S(!)()S(!)()(
for there is no way to arrive at)S(starting with S .

65 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Engendered language
Def. 17 (Language engendered by a word)

Let f 2 (⌃ [N)⇤.
LG(f) = {g 2 X ⇤/f

G⇤�! g}

Def. 18 (Language engendered by a grammar)

The language engendered by a grammar G is the set of words of ⌃⇤

derived from the axiom.
LG = LG(S)

For instance () 2 LG2 : S ! (S)S ! ()S ! ()
as well as ((())), ()()(), ((()()())). . .
but)()(62 LG2 , even though the following is a licit derivation :
)S(!)(S)S(!

)()S(!)()(
for there is no way to arrive at)S(starting with S .

65 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Engendered language
Def. 17 (Language engendered by a word)

Let f 2 (⌃ [N)⇤.
LG(f) = {g 2 X ⇤/f

G⇤�! g}

Def. 18 (Language engendered by a grammar)

The language engendered by a grammar G is the set of words of ⌃⇤

derived from the axiom.
LG = LG(S)

For instance () 2 LG2 : S ! (S)S ! ()S ! ()
as well as ((())), ()()(), ((()()())). . .
but)()(62 LG2 , even though the following is a licit derivation :
)S(!)(S)S(!)()S(!

)()(
for there is no way to arrive at)S(starting with S .

65 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Engendered language
Def. 17 (Language engendered by a word)

Let f 2 (⌃ [N)⇤.
LG(f) = {g 2 X ⇤/f

G⇤�! g}

Def. 18 (Language engendered by a grammar)

The language engendered by a grammar G is the set of words of ⌃⇤

derived from the axiom.
LG = LG(S)

For instance () 2 LG2 : S ! (S)S ! ()S ! ()
as well as ((())), ()()(), ((()()())). . .
but)()(62 LG2 , even though the following is a licit derivation :
)S(!)(S)S(!)()S(!)()(

for there is no way to arrive at)S(starting with S .

65 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Engendered language
Def. 17 (Language engendered by a word)

Let f 2 (⌃ [N)⇤.
LG(f) = {g 2 X ⇤/f

G⇤�! g}

Def. 18 (Language engendered by a grammar)

The language engendered by a grammar G is the set of words of ⌃⇤

derived from the axiom.
LG = LG(S)

For instance () 2 LG2 : S ! (S)S ! ()S ! ()
as well as ((())), ()()(), ((()()())). . .
but)()(62 LG2 , even though the following is a licit derivation :
)S(!)(S)S(!)()S(!)()(
for there is no way to arrive at)S(starting with S .

65 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Example

G4 = E ! E + T | T ,T ! T ⇥ F | F ,F ! (E) | a

a+ a, a+ (a⇥ a), ...

66 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Proto-word

Def. 19 (Proto-word)

A proto-word (or proto-sentence) is a word on (⌃ [N)⇤N(⌃ [N)⇤

(that is, a word containing at least one letter of N) produced by a
derivation from the axiom.

E ! E + T ! E + T ⇤ F ! T + T ⇤ F ! T + F ⇤ F !
T + a ⇤ F ! F + a ⇤ F ! a+ a ⇤ F !///////////a+ a ⇤ a

67 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Multiple derivations

A given word may have several derivations:
E ! E + E ! F + E ! F + F ! 3 + F ! 3 + 4

E ! E + E ! E + F ! E + 4 ! F + 4 ! 3 + 4
... but if the grammar is not ambiguous, there is only one left

derivation:
E ! E + E ! F + E ! 3 + E ! 3 + F ! 3 + 4

parsing : trying to find the/a left derivation (resp. right)

68 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Multiple derivations

A given word may have several derivations:
E ! E + E ! F + E ! F + F ! 3 + F ! 3 + 4
E ! E + E ! E + F ! E + 4 ! F + 4 ! 3 + 4

... but if the grammar is not ambiguous, there is only one left

derivation:
E ! E + E ! F + E ! 3 + E ! 3 + F ! 3 + 4

parsing : trying to find the/a left derivation (resp. right)

68 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Multiple derivations

A given word may have several derivations:
E ! E + E ! F + E ! F + F ! 3 + F ! 3 + 4
E ! E + E ! E + F ! E + 4 ! F + 4 ! 3 + 4
... but if the grammar is not ambiguous, there is only one left

derivation:

E ! E + E ! F + E ! 3 + E ! 3 + F ! 3 + 4

parsing : trying to find the/a left derivation (resp. right)

68 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Multiple derivations

A given word may have several derivations:
E ! E + E ! F + E ! F + F ! 3 + F ! 3 + 4
E ! E + E ! E + F ! E + 4 ! F + 4 ! 3 + 4
... but if the grammar is not ambiguous, there is only one left

derivation:
E ! E + E ! F + E ! 3 + E ! 3 + F ! 3 + 4

parsing : trying to find the/a left derivation (resp. right)

68 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Multiple derivations

A given word may have several derivations:
E ! E + E ! F + E ! F + F ! 3 + F ! 3 + 4
E ! E + E ! E + F ! E + 4 ! F + 4 ! 3 + 4
... but if the grammar is not ambiguous, there is only one left

derivation:
E ! E + E ! F + E ! 3 + E ! 3 + F ! 3 + 4

parsing : trying to find the/a left derivation (resp. right)

68 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Derivation tree

For context-free languages, there is a way to represent the set of
equivalent derivations, via a derivation tree which shows all the
derivation independantly of their order.

Grammar G2: S �! "
| (S)S

S

⇣
⇣
⇣
⇣
⇣
⇣
⇣⇣

�

�
�

@

@
@

P
P

P
P

P
P

PP

(S
⇣
⇣
⇣⇣

��@@ P
P

PP

(S

"

) S

"

) S

"

S ! (S)S ! ((S)S)S ! ((S)S)! ((S))! (())

69 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Structural analysis

Syntactic trees are precious to give access to the semantics

E

�
�

�
�

H
H

H
H

E

T

F

a

+ T

�
�

H
H

T

F

a

⇤ F

a

70 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Ambiguity
When a grammar can assign more than one derivation tree to a
word w 2 L(G) (or more than one left derivation), the grammar is
ambiguous.
For instance, G3 is ambiguous, since it can assign the two follwing
trees to 1 + 2⇥ 3:

E

�
�
�

��

H
H

H
HH

E

F

1

+ E

�
��

H
HH

E

F

2

⇥ E

F

3

E

�
�
�
��

H
H

H
HH

E

�
��

H
HH

E

F

1

+ E

F

2

⇥ E

F

3

71 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

About ambiguity

I Ambiguity is not desirable for the semantics
I Useful artificial languages are rarely ambiguous
I There are context-free languages that are intrinsequely

ambiguous (3)
I Natural languages are notoriously ambiguous...

(3) {anbambapbaq|(n > q ^m > p) _ (n > m ^ p > q)}

72 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Comparison of grammars

I different languages generated) different grammars
I same language generated by G and G0:

) same weak generative power
I same language generated by G and G0,

and same structural decomposition :
) same strong generative power

73 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Language classes

Overview

Formal Languages

Regular Languages

Formal Grammars
Definition
Language classes

Formal complexity of Natural Languages

74 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Language classes

Principle

Define language families on the basis of properties of the
grammars that generate them :

1. Four classes are defined, they are included one in another
2. A language is of type k if it can be recognized by a type k

grammar (and thus, by definition, by a type k � 1 grammar) ;
and cannot be recognized by a grammar of type k + 1.

75 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Language classes

Chomsky’s hierarchy

type 0 No restriction on
P ⇢ (X [V)⇤V (X [V)⇤ ⇥ (X [V)⇤.

type 1 (context-sensitive grammars) All rules of P are of the
shape (u1Su2, u1mu2), where u1 and u2 2 (X [V)⇤,
S 2 V and m 2 (X [V)+.

type 2 (context-free grammar) All rules of P are of the
shape (S ,m), where S 2 V and m 2 (X [V)⇤.

type 3 (regular grammars) All rules of P are of the shape
(S ,m), where S 2 V and m 2 X .V [X [{"}.

76 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Language classes

Examples

type 3:
S ! aS | aB | bB | cA
B ! bB | b
A ! cS | bB

type 2:
E ! E + T | T ,T ! T ⇥ F | F ,F ! (E) | a

77 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Language classes

Examples

type 3:
S ! aS | aB | bB | cA
B ! bB | b
A ! cS | bB

type 2:
E ! E + T | T ,T ! T ⇥ F | F ,F ! (E) | a

77 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Language classes

Example 1 type 0

Type 0:
S ! SABC AC ! CA A ! a
S ! " CA ! AC B ! b
AB ! BA BC ! CB C ! c
BA ! AB CB ! BC

generated language :

words with an equal number of a, b, and c .

78 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Language classes

Example 1 type 0

Type 0:
S ! SABC AC ! CA A ! a
S ! " CA ! AC B ! b
AB ! BA BC ! CB C ! c
BA ! AB CB ! BC

generated language : words with an equal number of a, b, and c .

78 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Language classes

Example 2: type 0

Type 0: S ! $S 0$ Aa ! aA $a ! a$
S 0 ! aAS 0 Ab ! bA $b ! b$
S 0 ! bBS 0 Ba ! aB A$! $a
S 0 ! " Bb ! bB B$! $b

$$! #

79 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Language classes

Example 2: type 0 (cont’d)
S

�
�
�
�
�
��

H
H

H
H

H
HH

$ S 0

�
�
�

H
H

H

a A S 0

�
�

H
H

b B S 0

"

$

$ a A b B $
a $ A b B $
a $ A b $ b
a $ b A $ b
a b $ A $ b
a b $ $ a b
a b # a b

80 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Language classes

Language families

Turing−recognizable

regular formal

3 2 1 0

recursively enumerable

finite

context−free

context−sensitive

no constraint

recursive

Turing−decidable

81 / 115

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Language classes

Remarks

I There are others ways to classify languages,
I either on other properties of the grammars;

I or on other properties of the languages

I Nested structures are preferred, but it’s not necessary
I When classes are nested, it is expected to have a growth of

complexity/expressive power

82 / 115

	Formal Languages
	Basic concepts

	Regular Languages
	Formal Grammars
	Formal complexity of Natural Languages
	References

