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Regular expressions

Regular expressions

It is common to use the 3 rational operations:
I union
I product
I Kleene star

to characterize certain languages...

({a} [ {b})⇤.{c} = {c , ac , abc , bc , . . . , baabaac , . . .}
(simplified notation (a|b)⇤c — regular expressions)

... but not all languages can be thus characterized.
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Regular expressions

Def. 9 (Rational Language)

A rational language on ⌃ is a subset of ⌃⇤ inductively defined thus:
I ; and {"} are rational languages ;
I for all a 2 X , the singleton {a} is a rational language ;
I for all g and h rational, the sets g [ h, g .h and g⇤ are rational

languages.
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Automata

Metaphoric definition

$
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Automata

Formal definition

Def. 10 (Finite deterministic automaton (FDA))

A finite state deterministic automaton A is defined by :
A = hQ,⌃, q0,F , �i

Q is a finite set of states
⌃ is an alphabet
q0 is a distinguished state, the initial state,
F is a subset of Q, whose members are called

final/terminal states
� is a mapping fonction from Q ⇥ ⌃ to Q.

Notation �(q, a) = r .
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Automata

Example

Let us consider the (finite) language {aa, ab, abb, acba, accb}.
The following automaton recognizes this langage: hQ,⌃, q0,F , �i,
avec Q = {1, 2, 3, 4, 5, 6, 7}, ⌃ = {a, b, c}, q0 = 1, F = {3, 4}, and
� is thus defined:
� : (1,a) 7! 2

(2,a) 7! 3

(2,b) 7! 4

(2,c) 7! 5

(4,b) 7! 3

(5,b) 7! 6

(5,c) 7! 7

(6,a) 7! 3

(7,b) 7! 3

b

1 76

5

4

3

2
a

c

b
a

c

b

b

a
a b c

! 1 2
2 3 4 5

 3
 4 3

5 6 7
6 3
7 3
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Automata

Recognition

Recognition is defined as the existence of a sequence of states
defined in the following way. Such a sequence is called a path in
the automaton.

Def. 11 (Recognition)

A word a1a2...an is recognized/accepted by an automaton iff
there exists a sequence k0, k1, ..., kn of states such that:

k0 = q0
kn 2 F
8i 2 [1, n], �(ki�1, ai ) = ki
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Automata

Example

b

a a

a,c

a,ca,b

c

b

c

b
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Automata

Exercices

Let ⌃ = {a, b, c}. Give deterministic finite state automata that
accept the following languages:

1. The set of words with an even length.
2. The set of words where the number of occurrences of b is

divisible by 3.
3. The set of words ending with a b.
4. The set of words not ending with a b.
5. The set of words non empty not ending with a b.
6. The set of words comprising at least a b.
7. The set of words comprising at most a b.
8. The set of words comprising exactly one b.
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Automata

AnswersUniversité Paris Diderot – LI0636 – 13/14 Ch2. Automates

1 2 3 4

a,b,c

a,b,c

a,b,c

a,b,c

a,b,c

b

a,c

a,c b
b

a,c

a,c b

5 6 7 8

b

a,c

a,c b
b

a,c a,b,c
b

a,c a,c
b

a,c a,c

ListeCpxAFDC

31
Soit A = {a, b, c}. Donner des automates déterministes complets reconnaissant les lan-

gages suivants :
1. L’ensemble des mots contenant au moins un a et dont la première occurence de a

n’est pas suivie par un c.
2. L’ensemble des mots comportant au moins 3 lettres et dont la troisième lettre à

partir de la fin est un a ou un c.ListeCpxAFDC-Answer
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (p. 23) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Le premier est assez simple ; le second : seule méthode trouvée : passer par un automate
non déterministe (il vaut mieux qu’il ne soit pas complet), puis le déterminiser. Version
trouvée (à vérifier) :

a (et c) b
1 1,2 1

1,2 1,2,3 1,3
1,2,3 1,2,3,4 1,3,4

1,3 1,2,4 1,4
1,2,3,4 1,2,3,4 1,3,4

1,3,4 1,2,4 1,4
1,2,4 1,2,3 1,3

1,4 1,2 1exIntersection

32
Soit � = {a, b, c}.

1. Proposer un automate déterministe (pas nécessairement complet) qui reconnaît le
langage sur �⇤ de tous les mots qui commencent par c et se terminent par c.

2. Proposer un automate déterministe qui reconnaît tous les mots de �⇤ qui com-
prennent le motif abb⇤a.

3. Proposer un automate (pas nécessairement complet) qui reconnaît tous les mots de
�⇤ qui comprennent le motif abb⇤a et commencent et se terminent par c.exIntersection-Answer

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (p. 23) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Soit � = {a, b, c}.

1. Proposer un automate déterministe (pas nécessairement complet) qui reconnaît le langage
sur �⇤ de tous les mots qui commencent par c et se terminent par c.

25
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Properties

Ways of non-determinism

A word is recognized if there exists a path in the automaton. It is
not excluded however that there be several paths for one word: in
that case, the automaton is non deterministic.
What are the sources of non determinism?
I �(a, S1) = {S2, S3}
I “spontaneous transition” = "-transition
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Properties

Equivalence theorems

For any non-deterministic automaton, it is possible to design a
complete deterministic automaton that recognizes the same
language.
Proofs: algorithms (constructive proofs)
First “remove” "-transitions, then “remove” multiple transitions.
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Properties

Closure (1)

Regular languages are closed under various operations: if the
languages L and L0 are regular, so are:
I L [ L0 (union); L.L0 (product); L⇤ (Kleene star)

(rational operations)
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Properties

Union of regular languages: an example
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Properties

Rational operations
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Properties

Closure (2)

Regular languages are closed under various operations: if the
languages L and L0 are regular, so are:
I L [ L0 (union); L.L0 (product); L⇤ (Kleene star)

(rational operations)
! for every rational expression describing a language , there is
a FSA that recognizes L

and vice-versa
I L \ L0 (intersection); L (complement)
I . . .
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Properties

Intersection of regular languages

Algorithmic proof
Deterministic complete automata

L1 a b
! 1 2 4

2 4 3
 3 3 3

4 4 4

L2 a b
$ 1 2 5

2 5 3
3 4 5
4 1 4
5 5 5

L1 \ L2 a b
! (1,1) (2,2) (4,5)

(2,2) (4,5) (3,3)
(4,5) (4,5) (4,5)
(3,3) (3,4) (3,5)
(3,4) (3,1) (3,4)

 (3,1) (3,2) (3,4)
(3,2) (3,4) (3,3)
(3,5) (3,5) (3,5)

47 / 115



Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Properties

Complement of a regular language

Deterministic complete automata

completed complemented

c
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Properties

Pumping lemma: Intuition

Take an automaton with k states.

If the accepted language is infinite,
then some words have more than k letters.
Therefore, at least one state has to be “gone through” several times.
That means there is a loop on that state.
Then making any number of loops will end up with a word in L.

) Pumping lemma
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Properties

Pumping lemma: definition

Def. 12 (Pumping Lemma)

Let L be an infinite regular language.
There exists an integer k such that:

8x 2 L, |x | > k , 9u, v ,w such that x = uvw , with:
(i) |v | � 1
(ii) |uv |  k
(iii) 8i � 0, uv iw 2 L
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Properties

Pumping lemma: Illustration

Let’s illustrate the lemma with a language which trivialy satisfies it:
a⇤bc .
Let k = 3, the work abc is long enough, and can be decomposed:
" a b c
u v w

The three properties of the lemma are satisfied:
I |v | � 1 (v = a)
I |uv |  k (uv = a)
I 8i 2 N, uv iw(= aibc) belongs to the language by definition.
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Properties

Pumping lemma: Consequences

The pumping lemma is a tool to prove that a language is not

regular.
L regular ) pumping lemma (8i , uv iw 2 L)
pumping lemma 6) L regular
NO pumping lemma ) L NOT regular

to prove that L is
regular provide an automaton

not regular show that the pumping lemma does not apply
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Properties

Pumping lemma: Consequences

Def. 13 (Consequences)

Let A be a k state automaton:
1. L(A) 6= ; iff A recognises (at least) one word u s.t. |u| < k .
2. L(A) is infinite iff A recognises (at least) one word u t.q.

k  |u| < 2k .
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Properties

Results: expressivity

I Any finite langage is regular
I anbm is regular
I anbn is not regular
I wwR is not regular (R : reverse word)
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Properties

Decidable problems
• The “word problem” w

?
2 L(A) is decidable.

) A computation on an automaton always stops.

• The “emptiness problem” L(A)
?
= ; is decidable.

) It’s enough to test all possible words of length  k , where k is the

number of states.

• The “finiteness problem” L(A)
?
is finite is decidable.

) Test all possible words whose length is between k and 2k . If there

exists u s.t. k < |u| < 2k and u 2 L(A), then L(A) is infinite.

• The “equivalence problem” L(A)
?
= L(A0) is decidable.

) it boils down to answering the question:⇣
L(A) \ L(A0)

⌘
[
⇣
L(A0) \ L(A)

⌘
= ;
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Properties

À quoi ça sert?

Why would you want to define (formally) a language?
I to formulate a request to a search engine (mang.*)
I to associate actions to (classes of) words (e.g., transducers)

I formal languages (math. expressions, programming

languages...)

I artificial (interface) languages

I (subpart of) natural languages
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Definition

Formal grammar

Def. 14 ((Formal) Grammar)

A formal grammar is defined by h⌃,N, S ,Pi where
I ⌃ is an alphabet
I N is a disjoint alphabet (non-terminal vocabulary)
I S 2 V is a distinguished element of N, called the axiom
I P is a set of « production rules », namely a subset of the

cartesian product (⌃ [ N)⇤N(⌃ [ N)⇤ ⇥ (⌃ [ N)⇤.
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Definition

Examples

h⌃,N, S ,Pi

G0 =

*

{joe, sam, sleeps}, {N,V , S}, S ,

8
>><

>>:

9
>>=

>>;

+
}
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Examples
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Definition

Examples

h⌃,N, S ,Pi

G0 =

*
{joe, sam, sleeps}, {N,V , S}, S ,

8
>><

>>:

N ! joe
N ! sam
V ! sleeps
S ! N V

9
>>=

>>;

+
}
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Definition

Examples (cont’d)

G1 =

*
{jean, dort}, {Np, SN, SV ,V , S}, S ,

8
>>>><

>>>>:

S ! SN SV
SN ! Np
SV ! V
Np ! jean
V ! dort

9
>>>>=

>>>>;

+
}

G2 = h{(, )}, {S}, S , {S �! " | (S)S}i
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Definition

Notation

G3 : E �! E + E
| E ⇥ E
| ( E )
| F

F �! 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

G3 = h{+,⇥, (, ), 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, {E ,F},E , {. . .}i

G4 = E ! E + T | T ,T ! T ⇥ F | F ,F ! (E ) | a
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Definition

Immediate Derivation

Def. 15 (Immediate derivation)

Let G = hX ,V , S ,Pi a grammar, (f , g) 2 (X [ V )⇤ two “words”,
r 2 P a production rule, such that r : A �! u (u 2 (X [ V )⇤).

• f derives into g (immediate derivation) with the rule r
(noted f

r�! g) iff
9v ,w s.t. f = vAw and g = vuw

• f derives into g (immediate derivation) in the grammar G
(noted f

G�! g) iff
9r 2 P s.t. f

r�! g .
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Definition

Derivation

Def. 16 (Derivation)

f
G⇤�! g if f = g or

9f0, f1, f2, ..., fn s.t. f0 = f
fn = g

8i 2 [1, n] : fi�1
G�! fi

An example with G0:
N V joe N

�! sam V joe N �! sam V joe joe or
sam V joe sam or
sam sleeps joe N or
. . .
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Definition

Endpoint of a derivation

G3 : E �! E + E
| E ⇥ E
| ( E )
| F

F �! 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

An example with G3:

E ⇥ E

�! F ⇥ E �! 3⇥ E �! 3⇥ (E ) �! 3⇥ (E + E ) �!
3⇥ (E + F ) �! 3⇥ (E + 4) �! 3⇥ (F + 4) �! 3⇥ (5+ 4) �!|

64 / 115



Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Endpoint of a derivation

G3 : E �! E + E
| E ⇥ E
| ( E )
| F

F �! 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

An example with G3:

E ⇥ E �! F ⇥ E

�! 3⇥ E �! 3⇥ (E ) �! 3⇥ (E + E ) �!
3⇥ (E + F ) �! 3⇥ (E + 4) �! 3⇥ (F + 4) �! 3⇥ (5+ 4) �!|

64 / 115



Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Endpoint of a derivation

G3 : E �! E + E
| E ⇥ E
| ( E )
| F

F �! 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

An example with G3:

E ⇥ E �! F ⇥ E �! 3⇥ E

�! 3⇥ (E ) �! 3⇥ (E + E ) �!
3⇥ (E + F ) �! 3⇥ (E + 4) �! 3⇥ (F + 4) �! 3⇥ (5+ 4) �!|

64 / 115



Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Endpoint of a derivation

G3 : E �! E + E
| E ⇥ E
| ( E )
| F

F �! 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

An example with G3:

E ⇥ E �! F ⇥ E �! 3⇥ E �! 3⇥ (E )

�! 3⇥ (E + E ) �!
3⇥ (E + F ) �! 3⇥ (E + 4) �! 3⇥ (F + 4) �! 3⇥ (5+ 4) �!|

64 / 115



Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Endpoint of a derivation

G3 : E �! E + E
| E ⇥ E
| ( E )
| F

F �! 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

An example with G3:

E ⇥ E �! F ⇥ E �! 3⇥ E �! 3⇥ (E ) �! 3⇥ (E + E )

�!
3⇥ (E + F ) �! 3⇥ (E + 4) �! 3⇥ (F + 4) �! 3⇥ (5+ 4) �!|

64 / 115



Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Endpoint of a derivation

G3 : E �! E + E
| E ⇥ E
| ( E )
| F

F �! 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

An example with G3:

E ⇥ E �! F ⇥ E �! 3⇥ E �! 3⇥ (E ) �! 3⇥ (E + E ) �!
3⇥ (E + F )

�! 3⇥ (E + 4) �! 3⇥ (F + 4) �! 3⇥ (5+ 4) �!|

64 / 115



Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Endpoint of a derivation

G3 : E �! E + E
| E ⇥ E
| ( E )
| F

F �! 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

An example with G3:

E ⇥ E �! F ⇥ E �! 3⇥ E �! 3⇥ (E ) �! 3⇥ (E + E ) �!
3⇥ (E + F ) �! 3⇥ (E + 4)

�! 3⇥ (F + 4) �! 3⇥ (5+ 4) �!|

64 / 115



Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Endpoint of a derivation

G3 : E �! E + E
| E ⇥ E
| ( E )
| F

F �! 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

An example with G3:

E ⇥ E �! F ⇥ E �! 3⇥ E �! 3⇥ (E ) �! 3⇥ (E + E ) �!
3⇥ (E + F ) �! 3⇥ (E + 4) �! 3⇥ (F + 4)

�! 3⇥ (5+ 4) �!|

64 / 115



Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Endpoint of a derivation

G3 : E �! E + E
| E ⇥ E
| ( E )
| F

F �! 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

An example with G3:

E ⇥ E �! F ⇥ E �! 3⇥ E �! 3⇥ (E ) �! 3⇥ (E + E ) �!
3⇥ (E + F ) �! 3⇥ (E + 4) �! 3⇥ (F + 4) �! 3⇥ (5+ 4)

�!|

64 / 115



Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Endpoint of a derivation

G3 : E �! E + E
| E ⇥ E
| ( E )
| F

F �! 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

An example with G3:

E ⇥ E �! F ⇥ E �! 3⇥ E �! 3⇥ (E ) �! 3⇥ (E + E ) �!
3⇥ (E + F ) �! 3⇥ (E + 4) �! 3⇥ (F + 4) �! 3⇥ (5+ 4) �!|

64 / 115



Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Engendered language
Def. 17 (Language engendered by a word)

Let f 2 (⌃ [ N)⇤.
LG(f ) = {g 2 X ⇤/f

G⇤�! g}

Def. 18 (Language engendered by a grammar)

The language engendered by a grammar G is the set of words of ⌃⇤

derived from the axiom.
LG = LG(S)

For instance () 2 LG2 : S ! (S)S ! ()S ! ()
as well as ((())), ()()(), ((()()())). . .
but )()( 62 LG2 , even though the following is a licit derivation :
)S(! )(S)S(! )()S(! )()(
for there is no way to arrive at )S( starting with S .
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Definition

Example

G4 = E ! E + T | T ,T ! T ⇥ F | F ,F ! (E ) | a

a+ a, a+ (a⇥ a), ...
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Definition

Proto-word

Def. 19 (Proto-word)

A proto-word (or proto-sentence) is a word on (⌃ [ N)⇤N(⌃ [ N)⇤

(that is, a word containing at least one letter of N) produced by a
derivation from the axiom.

E ! E + T ! E + T ⇤ F ! T + T ⇤ F ! T + F ⇤ F !
T + a ⇤ F ! F + a ⇤ F ! a+ a ⇤ F !///////////a+ a ⇤ a
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Definition

Multiple derivations

A given word may have several derivations:
E ! E + E ! F + E ! F + F ! 3 + F ! 3 + 4

E ! E + E ! E + F ! E + 4 ! F + 4 ! 3 + 4
... but if the grammar is not ambiguous, there is only one left

derivation:
E ! E + E ! F + E ! 3 + E ! 3 + F ! 3 + 4

parsing : trying to find the/a left derivation (resp. right)
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Definition

Derivation tree

For context-free languages, there is a way to represent the set of
equivalent derivations, via a derivation tree which shows all the
derivation independantly of their order.

Grammar G2: S �! "
| (S)S

S

⇣
⇣
⇣
⇣
⇣
⇣
⇣⇣

�

�
�

@

@
@

P
P

P
P

P
P

PP

( S
⇣
⇣
⇣⇣

��@@ P
P

PP

( S

"

) S

"

) S

"

S ! (S)S ! ((S)S)S ! ((S)S)! ((S))! (())
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Definition

Structural analysis

Syntactic trees are precious to give access to the semantics

E

�
�

�
�

H
H

H
H

E

T

F

a

+ T

�
�

H
H

T

F

a

⇤ F

a

70 / 115



Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Ambiguity
When a grammar can assign more than one derivation tree to a
word w 2 L(G ) (or more than one left derivation), the grammar is
ambiguous.
For instance, G3 is ambiguous, since it can assign the two follwing
trees to 1 + 2⇥ 3:

E

�
�
�

��

H
H

H
HH

E

F

1

+ E

�
��

H
HH

E

F

2

⇥ E

F

3

E

�
�
�
��

H
H

H
HH

E

�
��

H
HH

E

F

1

+ E

F

2

⇥ E

F

3
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Definition

About ambiguity

I Ambiguity is not desirable for the semantics
I Useful artificial languages are rarely ambiguous
I There are context-free languages that are intrinsequely

ambiguous (3)
I Natural languages are notoriously ambiguous...

(3) {anbambapbaq|(n > q ^m > p) _ (n > m ^ p > q)}
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Definition

Comparison of grammars

I different languages generated ) different grammars
I same language generated by G and G0:

) same weak generative power
I same language generated by G and G0,

and same structural decomposition :
) same strong generative power
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Language classes

Overview

Formal Languages

Regular Languages

Formal Grammars
Definition
Language classes

Formal complexity of Natural Languages
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Language classes

Principle

Define language families on the basis of properties of the
grammars that generate them :

1. Four classes are defined, they are included one in another
2. A language is of type k if it can be recognized by a type k

grammar (and thus, by definition, by a type k � 1 grammar) ;
and cannot be recognized by a grammar of type k + 1.
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Language classes

Chomsky’s hierarchy

type 0 No restriction on
P ⇢ (X [ V )⇤V (X [ V )⇤ ⇥ (X [ V )⇤.

type 1 (context-sensitive grammars) All rules of P are of the
shape (u1Su2, u1mu2), where u1 and u2 2 (X [ V )⇤,
S 2 V and m 2 (X [ V )+.

type 2 (context-free grammar) All rules of P are of the
shape (S ,m), where S 2 V and m 2 (X [ V )⇤.

type 3 (regular grammars) All rules of P are of the shape
(S ,m), where S 2 V and m 2 X .V [ X [ {"}.
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Language classes

Examples

type 3:
S ! aS | aB | bB | cA
B ! bB | b
A ! cS | bB

type 2:
E ! E + T | T ,T ! T ⇥ F | F ,F ! (E ) | a
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Example 1 type 0

Type 0:
S ! SABC AC ! CA A ! a
S ! " CA ! AC B ! b
AB ! BA BC ! CB C ! c
BA ! AB CB ! BC

generated language :

words with an equal number of a, b, and c .
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Example 2: type 0

Type 0: S ! $S 0$ Aa ! aA $a ! a$
S 0 ! aAS 0 Ab ! bA $b ! b$
S 0 ! bBS 0 Ba ! aB A$ ! $a
S 0 ! " Bb ! bB B$! $b

$$ ! #
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Example 2: type 0 (cont’d)
S

�
�
�
�
�
��

H
H

H
H

H
HH

$ S 0

�
�
�

H
H

H

a A S 0

�
�

H
H

b B S 0

"

$

$ a A b B $
a $ A b B $
a $ A b $ b
a $ b A $ b
a b $ A $ b
a b $ $ a b
a b # a b

80 / 115



Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Language classes

Language families

Turing−recognizable

regular formal

3 2 1 0

recursively enumerable

finite

context−free

context−sensitive

no constraint

recursive

Turing−decidable
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Remarks

I There are others ways to classify languages,
I either on other properties of the grammars;

I or on other properties of the languages

I Nested structures are preferred, but it’s not necessary
I When classes are nested, it is expected to have a growth of

complexity/expressive power
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