Pascal Amsili

Sorbonne Nouvelle, Lattice (CNRS/ENS-PSL/SN)

Cogmaster, september 2022

#### General introduction

- 1. Mathematicians (incl. Chomsky) have formalized the notion of language oversimplification? maybe...
- 2. It buys us:
  - 2.1 Tools to think about theoretical issues about language/s (expressiveness, complexity, comparability...)
  - 2.2 Tools to manipulate concretely language (e.g. with computers)
  - 2.3 A research programme:
    - Represent the syntax of natural language in a fully unambiguously specified way

Now let's get familiar with the mathematical notion of language

# Formal Languages Basic concepts

Definition

Regular Languages

Formal Grammars

Formal complexity of Natural Languages

## Alphabet, word

#### Def. 1 (Alphabet)

An alphabet  $\Sigma$  is a finite set of symbols (letters). The size of the alphabet is the cardinal of the set.

#### Def. 2 (Word)

A word on the alphabet  $\Sigma$  is a finite sequence of letters from  $\Sigma$ . Formally, let [p] = (1, 2, 3, 4, ..., p) (ordered integer sequence). Then a word is a mapping

$$u:[p]\longrightarrow \Sigma$$

p, the length of u, is noted |u|.

```
Examples I
```

```
Alphabet
         {₌, __}
Words
```

**Alphabet** 

Words

. . .

Basic concepts

00000000

### Examples II

```
Alphabet
             \{0,1,2,3,4,5,6,7,8,9,\cdot\}
Words
              235 \cdot 29
              007 \cdot 12
              \cdot 1 \cdot 1 \cdot 00 \cdot \cdot
              3 \cdot 1415962 \dots (\pi)
             {a, woman, loves, man }
Alphabet
Words
              a
              a woman loves a woman
              man man a loves woman loves a
              . . .
```

#### Monoid

#### Def. 3 ( $\Sigma^*$ )

Let  $\Sigma$  be an alphabet.

The set of all the words that can be formed with any number of letters from  $\Sigma$  is noted  $\Sigma^*$ 

 $\Sigma^*$  includes a word with no letter, noted  $\varepsilon$ 

Example: 
$$\Sigma = \{a, b, c\}$$
  
 $\Sigma^* = \{\varepsilon, a, b, c, aa, ab, ac, ba, \dots, bbb, \dots\}$ 

N.B.:  $\Sigma^*$  is always infinite, except...

### Monoid

#### Def. 3 ( $\Sigma^*$ )

Let  $\Sigma$  be an alphabet.

The set of all the words that can be formed with any number of letters from  $\Sigma$  is noted  $\Sigma^*$ 

 $\Sigma^*$  includes a word with no letter, noted  $\varepsilon$ 

Example: 
$$\Sigma = \{a, b, c\}$$
  
 $\Sigma^* = \{\varepsilon, a, b, c, aa, ab, ac, ba, \dots, bbb, \dots\}$ 

N.B.:  $\Sigma^*$  is always infinite, except... if  $\Sigma = \emptyset$ . Then  $\Sigma^* = \{\varepsilon\}$ . Basic concepts

000000000

### Structure of $\Sigma^*$

Let k be the size of the alphabet  $k = |\Sigma|$ .

Then 
$$\Sigma^*$$
 contains :  $k^0=1$  word(s) of 0 letters ( $\varepsilon$ )  $k^1=k$  word(s) of 1 letters  $k^2$  word(s) of 2 letters ...  $k^n$  words of  $n$  letters,  $\forall n \geq 0$ 

Formal Languages

$$\Sigma = \{a, b, c\}$$



- ► Words can be enumerated according to different orders
- $\triangleright$   $\Sigma^*$  is a countable set

#### Concatenation

 $\Sigma^*$  can be equipped with a binary operation: concatenation

Def. 4 (Concatenation)

Let  $[p] \xrightarrow{u} \Sigma$ ,  $[q] \xrightarrow{w} \Sigma$ . The concatenation of u and w, noted uw (u.w) is thus defined:

$$egin{aligned} \mathit{uw} : & [\mathit{p}+\mathit{q}] \longrightarrow \Sigma \ & \mathit{uw}_i = \left\{ egin{array}{ll} \mathit{u}_i & \mathsf{for} & i \in [1,\mathit{p}] \ \mathit{w}_{i-\mathit{p}} & \mathsf{for} & i \in [\mathit{p}+1,\mathit{p}+\mathit{q}] \end{array} 
ight. \end{aligned}$$

Formal Languages

#### $\Sigma^*$ can be equipped with a binary operation: concatenation

Def. 4 (Concatenation)

Let  $[p] \xrightarrow{u} \Sigma$ ,  $[q] \xrightarrow{w} \Sigma$ . The concatenation of u and w, noted uw (u.w) is thus defined:

$$egin{aligned} \mathit{uw}: & [\mathit{p}+\mathit{q}] \longrightarrow \Sigma \ & \mathit{uw}_i = \left\{ egin{array}{ll} \mathit{u}_i & ext{for} & i \in [1,\mathit{p}] \ \mathit{w}_{i-\mathit{p}} & ext{for} & i \in [\mathit{p}+1,\mathit{p}+\mathit{q}] \end{array} 
ight. \end{aligned}$$

Example: u bacba v cca

### $\Sigma^*$ can be equipped with a binary operation: concatenation

Def. 4 (Concatenation)

Let  $[p] \xrightarrow{u} \Sigma$ ,  $[q] \xrightarrow{w} \Sigma$ . The concatenation of u and w, noted uw (u.w) is thus defined:

$$uw: [p+q] \longrightarrow \Sigma$$

$$uw_i = \begin{cases} u_i & \text{for } i \in [1,p] \\ w_{i-p} & \text{for } i \in [p+1,p+q] \end{cases}$$

Example: u bacba cca uv bacbacca

#### **Factor**

#### Def. 5 (Factor)

A factor w of u is a subset of adjascent letters in u.

$$-w$$
 is a factor of  $u$   $\Leftrightarrow$   $\exists u_1, u_2 \text{ s.t. } u = u_1 w u_2$ 

-w is a left factor (prefix) of 
$$u \Leftrightarrow \exists u_2 \text{ s.t. } u = wu_2$$

$$-w$$
 is a right factor (suffix) of  $u \Leftrightarrow \exists u_1 \text{ s.t. } u = u_1 w$ 

#### Def. 6 (Factorization)

We call *factorization* the decomposition of a word into factors.

- 1. Words have been defined on  $\Sigma$ . If one takes two such words, it's always possible to form a new word by concatenating them.
- 2. Any word can be factorised in many different ways: a b a c c a b

#### Role of concatenation

- 1. Words have been defined on  $\Sigma$ . If one takes two such words, it's always possible to form a new word by concatenating them.
- 2. Any word can be factorised in many different ways: abaccab (a b a)(c c a b)

- 1. Words have been defined on  $\Sigma$ . If one takes two such words, it's always possible to form a new word by concatenating them.
- 2. Any word can be factorised in many different ways:

  a b a c c a b

  (a b)(a c c)(a b)

- 1. Words have been defined on  $\Sigma$ . If one takes two such words, it's always possible to form a new word by concatenating them.
- 2. Any word can be factorised in many different ways: a b a c c a b
  (a b a c c)(a b)

# Role of concatenation

- 1. Words have been defined on  $\Sigma$ . If one takes two such words, it's always possible to form a new word by concatenating them.
- 2. Any word can be factorised in many different ways: abaccab (a)(b)(a)(c)(c)(a)(b)

Formal Languages

#### Role of concatenation

- 1. Words have been defined on  $\Sigma$ . If one takes two such words, it's always possible to form a new word by concatenating them.
- 2. Any word can be factorised in many different ways: abaccab (a)b(a)b(b)b(a)b(b)
- 3. Since all letters of  $\Sigma$  form a word of length 1 (this set of words is called the *base*),
- 4. any word of  $\Sigma^*$  can be seen as a (unique) sequence of concatenations of length 1 words :  $a\,b\,a\,c\,c\,a\,b$

```
(((((((ab)a)c)c)a)b)
(((((((a.b).a).c).c).a).b)
```

# Properties of concatenation

- 1. Concatenation is non commutative
- Concatenation is associative
- 3. Concatenation has an identity (neutral) element:  $\varepsilon$

1. 
$$uv.w \neq w.uv$$

2. 
$$(u.v).w = u.(v.w)$$

3. 
$$u.\varepsilon = \varepsilon.u = u$$

Notation:  $a.a.a = a^3$ 

#### Overview

#### Formal Languages

Definition

#### Regular Languages

Formal Grammars

Formal complexity of Natural Languages



### Language

Formal Languages

Def. 7 (Formal Language)

Let  $\Sigma$  be an alphabet.

A language on  $\Sigma$  is a set of words on  $\Sigma$ .

# Language

#### Def. 7 (Formal Language)

Let  $\Sigma$  be an alphabet.

A language on  $\Sigma$  is a set of words on  $\Sigma$ .

or, equivalently,

A language on  $\Sigma$  is a subset of  $\Sigma^*$ 

Let 
$$\Sigma = \{a, b, c\}$$
.

Let 
$$\Sigma = \{a, b, c\}$$
.

$$L_1 = \{aa, ab, bac\}$$

finite language

Formal Languages

Let 
$$\Sigma = \{a, b, c\}$$
.

$$L_1 = \{aa, ab, bac\}$$
 finite language  $L_2 = \{a, aa, aaa, aaaa \dots \}$ 

# Examples I

Let 
$$\Sigma = \{a, b, c\}$$
.

$$\begin{array}{ccc} L_1 = \{aa, ab, bac\} & \text{finite language} \\ L_2 = \{a, aa, aaa, aaaa \ldots\} & \\ & \text{or } L_2 = \{a^i \ / \ i \geq 1\} & \text{infinite language} \end{array}$$

Formal Languages

Let 
$$\Sigma = \{a, b, c\}$$
.

$$\begin{array}{ll} L_1 = \{aa, ab, bac\} & \text{finite language} \\ L_2 = \{a, aa, aaa, aaaa \ldots\} & \\ & \text{or } L_2 = \{a^i \ / \ i \geq 1\} & \text{infinite language} \\ \hline L_3 = \{\varepsilon\} & \text{finite language,} \\ & \text{reduced to a singleton} \end{array}$$

Formal Languages

Let 
$$\Sigma = \{a, b, c\}$$
.

Let 
$$\Sigma = \{a, b, c\}$$
.

$$L_1 = \{aa, ab, bac\} \qquad \text{finite language}$$

$$L_2 = \{a, aa, aaa, aaaa \dots\}$$

$$\text{or } L_2 = \{a^i \mid i \geq 1\} \qquad \text{infinite language}$$

$$L_3 = \{\varepsilon\} \qquad \qquad \text{finite language,}$$

$$\text{reduced to a singleton}$$

$$L_4 = \emptyset \qquad \text{"empty" language}$$

Let 
$$\Sigma = \{a, b, c\}$$
.

$$L_1 = \{aa, ab, bac\} \qquad \text{finite language}$$

$$L_2 = \{a, aa, aaa, aaaa \dots\}$$
or  $L_2 = \{a^i \mid i \ge 1\}$  infinite language
$$L_3 = \{\varepsilon\} \qquad \text{finite language,}$$
reduced to a singleton
$$L_4 = \emptyset \qquad \text{"empty" language}$$

$$L_5 = \Sigma^*$$

Let  $\Sigma = \{a, man, loves, woman\}.$ 

Formal Languages

Let  $\Sigma = \{a, man, loves, woman\}.$ 

 $L = \{ a \text{ man loves a woman, a woman loves a man } \}$ 

Formal Languages

Let  $\Sigma = \{a, man, loves, woman\}.$ 

 $L = \{$  a man loves a woman, a woman loves a man  $\}$ 

Let  $\Sigma' = \{a, man, who, saw, fell\}.$ 

Formal Languages

Let  $\Sigma = \{a, man, loves, woman\}.$ 

 $L = \{$  a man loves a woman, a woman loves a man  $\}$ 

Let  $\Sigma' = \{a, man, who, saw, fell\}.$ 

$$L' = \left\{ \begin{array}{l} \text{a man fell,} \\ \text{a man who saw a man fell,} \\ \text{a man who saw a man who saw a man fell,} \\ \dots \end{array} \right\}$$

# Set operations

Since a language is a set, usual set operations can be defined:

- union
- intersection
- set difference

#### Since a language is a set, usual set operations can be defined:

- union
- intersection
- set difference

⇒ One may describe a (complex) language as the result of set operations on (simpler) languages:

```
\{a^{2k} / k \geqslant 1\} = \{a, aa, aaa, aaaa, ...\} \cap \{ww / w \in \Sigma^*\}
```

## Additional operations

### Def. 8 (product operation on languages)

One can define the *language product* and its closure *the Kleene star* operation:

► The *product* of languages is thus defined:

$$L_1.L_2 = \{uv \, / \, u \in L_1 \ \& \ v \in L_2\}$$
 Notation:  $L.L.L...L = L^k$  ;  $L^0 = \{\varepsilon\}$ 

► The Kleene star of a language is thus defined:

$$L^* = \bigcup_{n>0} L^n$$

#### References I

Formal Languages

- Bar-Hillel, Yehoshua, Perles, Micha, & Shamir, Eliahu. 1961. On formal properties of simple phrase structure grammars. STUF-Language Typology and Universals, 14(1-4), 143-172.
- Chomsky, Noam, 1957, Syntactic Structures, Den Haag: Mouton & Co.
- Chomsky, Noam. 1995. The Minimalist Program. Vol. 28. Cambridge, Mass.: MIT Press.
- Gazdar, Gerald. & Pullum, Geoffrey K. 1985 (May), Computationally Relevant Properties of Natural Languages and Their Grammars. Tech. rept. Center for the Study of Language and Information. Leland Stanford Junior University.
- Gibson, Edward, & Thomas, James, 1997. The Complexity of Nested Structures in English: Evidence for the Syntactic Prediction Locality Theory of Linguistic Complexity. Unpublished manuscript. Massachusetts Institute of Technology.
- Joshi, Aravind K. 1985. Tree Adjoining Grammars: How Much Context-Sensitivity is Required to Provide Reasonable Structural Descriptions? Tech. rept. Department of Computer and Information Science, University of Pennsylvania.
- Langendoen, D Terence, & Postal, Paul Martin. 1984. The vastness of natural languages. Basil Blackwell Oxford
- Mannell, Robert. 1999. Infinite number of sentences. part of a set of class notes on the Internet. http://clas.mg.edu.au/speech/infinite sentences/.
- Schieber, Stuart M. 1985. Evidence against the Context-Freeness of Natural Language. Linguistics and Philosophy, 8(3), 333-343.
- Stabler, Edward P. 2011. Computational perspectives on minimalism. Oxford handbook of linguistic Schonne !!! Nouvelle ...

Are NI context-sensitive?

#### References II

Steedman, Mark, et al. . 2012 (June). Combinatory Categorial Grammars for Robust Natural Language Processing. Slides for NASSLLI course

http://homepages.inf.ed.ac.uk/steedman/papers/ccg/nasslli12.pdf.

Vijay-Shanker, K., & Weir, David J. 1994. The Equivalence of Four Extensions of Context–Free Grammars. Mathematical Systems Theory, 27, 511–546.