A.1 Le logarithme et les arbres binaires

Le logarithme à base 2 de b est le nombre qu'il faut donner pour exposant à 2 pour obtenir b. Autrement dit, $\log_2 b = x \Leftrightarrow 2^x = b$.

Un arbre binaire complet de profondeur k contient 2^k feuilles. Donc, la profondeur d'un arbre contenant n feuilles est le nombre qu'il faut mettre en exposant à 2 pour obtenir n, donc $\log_2 n$. Il y a de plus un rapport entre le nombre de feuilles et le nombre total de nœuds : il y en a en tout $n + \frac{n}{2} + \frac{n}{4} + \ldots + 1 = 2n - 1$. Le schéma suivant et le tableau qui l'accompagne donnent ces relations selon que l'on fixe comme point de départ la hauteur, le nombre de feuilles, ou le nombre total de nœuds.

$Arbre\ binaire\ oldsymbol{complet}$			
Hauteur	nb feuilles	nb sommets	nb nœuds
	•	0	$(\circ + \bullet)$
4	16	15	31
k	2^k	$2^{k}-1$	$2^{k+1} - 1$
$\log_2 n$	n	n-1	2n - 1
$\log_2(m+1) - 1$	$\frac{m+1}{2}$	$\frac{m+1}{2} - 1$	m
0 0			