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Automata

Ex. 1

Draw a complete deterministic automaton which recognizes all the words on {a, b, c}∗ wich are composed
of an even number of occurrences of the pattern ab.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Answer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The language described in the question is the set of words only

composed of even repetitions of ab. In other words, the lan-
guage {(ab)k / k > 0}.
The black automaton given here is deterministic and recog-
nizes this language (to make it complete we have to add the
gray part).
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A second interpretation of the problem was often found in the copies
you turned in: the language you tried to recognize is the set of words
such that they comprise an even number of occurrences of the string
ab, possibly interwined with other letters with no other constraint.
To recognize such a language, we need to distinguish several states:

• an initial state which is also a recognition state (no occurrence
of the pattern): state 1.

• a state in which an a was seen, but since the pattern ab is
incomplete, we can stop there, it is also a recognition state:
state 2.

• a state where having seen the pattern ab once (or more gener-
ally an odd number of times), we expect another occurrence
of ab: state 3.

• a state in which we may be in the middle of the expected ab

pattern, in which case a b would lead to recognition, but since
we still need a b to accept the word, it’s not a recognition
state: state 4.
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Ex. 2

Draw a complete deterministic automaton which recognizes all the words on {a, b, c}∗ such that if they
include the letter b they must end with the factor ac.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Answer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Formal Grammars

Ex. 3

Propose a (context-free) grammar that engenders the language abncbna with n > 0.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Answer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We start with a rule to produce the unique pair of as at both ends of the word. Then X
is in charge of producing bncbn recursively. The case n = 0 corresponds to the sequence
of rewritings S −→ aXa −→ aca.

S → aXa
X → bXb
X → c

Note that the grammar on the right is not working properly: the two instances of X
can produce an arbitrary number of bs, so it is not longer warranted that we have the
same number of b. This grammar engenders the language abncbma (or ab∗cb∗a).

S → aXcXa
X → bX
X → ε

Ex. 4

A λ-term is either a variable, or a lambda abstraction, or a functional application. Considering that the
terminal alphabet is {λ, ., (, ), x, y, z, . . .}, give a (context-free) grammar that engenders the language of
pure λ-calculus. Give the syntactic trees (according to your grammar) of the λ-terms λx.λy.(y)x and
(λx.λy.y)x

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Answer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Simplest proposition : T → λV.T
T → (T )T
T → V
V → x | y | z . . .

Alternatively, to make things more
legible, additional “categories” could
be used:

T → L | F | V
L → λV.T
F → (T )T
V → x | y | z . . .

The trees below correspond to the first proposition.
T

λ V

x

. T

λ V

y

. T

( V

y

) V

x

T

( T

λ V

x

. T

λ V

y

. V

y

) V

x

Ex. 5

Let’s consider the language L1 on the vocabulary V = {l’, homme, ours, qui, a, vu} that include all finite
sentences of the form l’homme qui a vu l’ours, l’homme qui a vu l’homme qui a vu l’ours, l’homme qui a

vu l’homme qui a vu . . . qui a vu l’ours.

(a) Give a context-free grammar that generates L1.

Let L2 be the language engendered by the grammar G2 : S → NP Rel
NP → l’homme

| l’ours
Rel → qui a vu NP Rel

| qui a vu l’ours

(b) Propose a grammar G3 that engenders the language L3, which is a superset of L2 in which the symbols
ours and homme are strictly commutable.

(c) Describe informally the differences between L1 and L2.
(d) Give a context-free grammar of the language L2 \ L1 (L2 minus L1).
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Answer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(a) There are many options:

S → l’ homme qui a vu S
→ l’ homme qui a vu l’ ours

S → l’ homme qui a vu X l’ ours

X → l’ homme qui a vu X
→ ε

S → l’ homme qui a vu S′

S′ → S | l’ ours

S → H l’ ours

H → l’ homme qui a vu H
→ l’ homme qui a vu

The following grammar also works, but with the disadvantage of intro-
ducing unnecessary ambiguity:

S → H O
O → l’ ours

H → H H
→ l’ homme qui a vu

Getting inspiration from the grammar introduced in the next question,
one could also propose a version slightly more in line with a linguistic
analysis:

S → NP Rel
NP → l’homme
Rel→ qui a vu NP Rel

| qui a vu l’ours

One important point is to make sure that the grammar does not overgenerate.

(b) A grammar G3 for L3.

To make sure that homme and ours are strictly commutable, we have
to ensure that no rule makes a difference between the two words. The
grammar G3 here differs from G2 only in one place:

S → NP Rel
NP → l’homme | l’ours
Rel→ qui a vu NP Rel

| qui a vu l’ours NP

(c) In L1, ours occurs only once at the end, the NP head is homme everywhere else. In L2, ours can
be the head of any NP, as well as homme, but all well-formed expressions end with ours. So the
two nouns are almost commutable (interchangeable) but not entirely. To make sure ours and homme

have exactly the same possible contexts, it has to be possible that a well-formed expression ends with
homme. That’s made possible by G3 (previous question).

(d) Expressions that belong to L2 without belonging to L1 are expressions in which ours occurs at least
once inside an NP (not counting the last occurrence). To achieve this, we need to make sure the
derivation cannot be ended until at least one ours was introduced. The following grammar is one
way (out of many) to achieve this: S → l’ homme qui a vu S

→ l’ ours qui a vu Y
Y → l’ homme qui a vu Y
→ l’ ours qui a vu Y
→ l’ours

Predicate Logic

Ex. 6

Translate as precisely as possible the following sentences intro predicate logic. Please make sure that
each formula has as many pairs of parentheses as there are binary operators.

(1) a. No nurse appreciate a surgeon.
b. Everyone is looking for something that not everyone finds.
c. Exactly two persons came.
d. All students should declare their intership if they take one.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Answer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1a) No nurse appreciate a surgeon.

That is a typical case where there might be a scope ambiguity between the two quantified NPs.
The formula for the congruent analysis (higher scope for the universal negative) is (2a). No nurse

can also be represented with a universal quantifier, the corresponding formula would then be (2b).
An inverse scope reading would be represented as (2c).
The formula (2d) expresses that for each nurse there is a surgeon that she does not appreciate. It
does not seem to be a possible reading of (1a).

(2) a. ¬∃x (Nx ∧ ∃y (Sy ∧ Axy))
b. ∀x (Nx→ ¬∃y (Sy ∧ Axy))
c. ∃y (Sy ∧ ¬∃x (Nx ∧ Axy))
d. ∀x (Nx→ ∃y (Sy ∧ ¬Axy))

(1b) Everyone is looking for something that not everyone finds.

The first possible reading would be that there is a unique thing that everyone is looking for and

that not everyone finds, and it can be represented by (3a). Note that this reading is not congruent
with the syntactic structure, since it gives wide scope to something. A more syntactically congruent
reading would have that the things that people look for may be different for each person. Something
like (3b). But we need then to make clear how to interpret the last part of the sentence. A
straightforward reading would be that it’s never the case that everyone finds a thing that some
person is looking for: (3c). This reading is probably the easiest to get compositionaly. However,
another interpretation could probably be found: an interpretation according to which everyone has
a thing that they are looking for, and not everyone finds the thing(s) that they look for. But this is
not precise enough: is it the case that some people don’t find any of the things they look for (3d)?
or is it the case that some people don’t find all the things they look for (but only maybe some of
them) (3e) ? Depending on the answer to this question, the final formula will the conjunction of
(3b) and (3d) or (3e).
The formula (3f) was often proposed. It means that for every person there are things that they
search for and that they don’t find. I don’t think it is a possible interpretation of (1b).

(3) a. ∃x (Tx ∧ ∀y (Py → Lyx) ∧ ¬∀y (Py → Fyx))
b. ∀y (Py → ∃x (Tx ∧ Lyx))
c. ∀y (Py → ∃x (Tx ∧ Lyx ∧ ¬∀z (Pz → Fzx)))
d. ¬∀z (Pz → ∀x ((Tx ∧ Lzx)→ ¬Fzx))
e. ¬∀z (Pz → ¬∀x ((Tx ∧ Lzx)→ Fzx))
f. ∀x (Px→ ∃y (Ty ∧ Lxy ∧ ¬Fxy))

(1c) Exactly two persons came.

To refer to exactly two (different) entities we have to use the equal sign in the language.

(4) a. ∃x∃y (Px ∧ Py ∧ x 6= y ∧ Cx ∧ Cy ∧ ¬∃z (Pz ∧ z 6= x ∧ z 6= y ∧ Cz))

(1d) All students should declare their intership if they take one.

This is a typical donkey sentence. Assuming Dxy for x should declare y, a compositional treatment
would lead to a formula like (5a) where a variable is free. There is however a way to account for
the truth conditions of the sentence, with the formula (5b) or (5c) which is equivalent.

(5) a. ∀x (Sx→ (∃y (Iy ∧ Txy)→ Dxy))
b. ∀x∀y (Sx→ ((Iy ∧ Txy)→ Dxy))
c. ∀x∀y ((Sx ∧ Iy ∧ Txy)→ Dxy))
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Montague Programme (« Grammar engineering »)

Ex. 7

(A) Consider the sentence (6).

(6) Joe is sick.

Let’s assume that the semantic representation for this sentence is the formula (S)j . We also assume

that the semantic contribution of the proper noun Joe is the individual constant j. Let’s assume in
addition that the copula is doesn’t bring any contribution to the formula. Draw the syntactic tree
and give the composition rules so that the fragment containing only (6) is fully defined syntactically
and compositionaly.

(B) Let’s now assume that is has a semantic contribution corresponding to the identity function, of
which the only role is to make sure that the λ-term that corresponds to the predicate is passed up
in the tree. Give the correct λ-term that should be associated with is. Of what type is this term ?
Show that the β-reduction(s) yield the expected result.

(C) Let’s consider the λ-term (7). Give the type of all its subformulae and of its variables, assuming
that x is of type e. S is a predicate constant.

(7) λQλx. ((S)x ∧ (Q)x)

(D) Consider the sentence (8).

(8) Joe is sick and depressed.

We suppose first that the syntax of the adjectival phrase sick and depressed is “flat”, given by the

rule AP → A′ and A′ . As a consequence, we assume a composition rule of the form 0← ((2)1)3 .

Which λ-term can we associate with and to get the correct representation for (8)?

(E) We assume now that the syntax of coordinated adjectives is not flat, in order to get a binary syntactic

tree. The grammar now contains rules of the form AP → A′ CoordP and CoordP → and A′ .
What difference does it make with the preceding proposal ?

(F) We now associate the λ-term λP. (P )j to the proper noun Joe. Under this new hypothesis, propose

a complete fragment that includes both (6) and (8) (with the options taken in questions B and D).

(G) Consider the sentence (9).

(9) A sick man entered.

We assume that the λ-term to be associated with sick is (7). Show that the combination with man

will yield an expression of the right type.

(H) If now we want the contribution of the adjective sick to be λx. (S)x we need to introduce en

operator Φ such that (Φ)λx.(S)x =β λQλx. ((S)x ∧ (Q)x) . Propose a definition for Φ and give its

type.

(I) Enrich the previous fragment so that (9) will get compositionaly the representation (10) (where Sx
means (S)x, etc.).

(10) ∃x ((Sx ∧Mx) ∧ Ex)
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Answer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(A) Consider the sentence (11).

(11) Joe is sick.

Let’s assume that the semantic representation for this sentence is the formula (S)j . We also assume that

the semantic contribution of the proper noun Joe is the individual constant j. Let’s assume in addition that
the copula is doesn’t bring any contribution to the formula. Draw the syntactic tree and give the composition
rules so that the fragment containing only (11) is fully defined syntactically and compositionaly.

To fully define the fragment we need either (A) to provide a complete CFG grammar in which each
(syntactic) rule is associated with a semantic rule, or, at least in simple cases like this one, (B) to draw a
“decorated” syntactic tree where each node is associated with a lambda-term. In that case the composition
rules can be read on the tree and may not be fully made explicit.
(A) A possible grammar could be the one below, which corresponds to the tree on the right. Note: only
cases (a) (in which the VP applies to the NP) and (b) (in which the copula contribution is simply ignored)
are to be distinguished. The rest, including the lexicon from (c) on, is straightforward.

Syntax Semantics
S → NP VP [[S]] = ( [[VP]] ) [[NP]] (a)
VP → Cop AdjP [[VP]] = [[AdjP]] (b)
AdjP→ Adj [[AdjP]] = [[Adj]]
NP → PN [[NP]] = [[PN]]
Adj → sick [[Adj]] = λx.Sx (c)
PN → Joe [[PN]] = j
Cop → is [[Cop]] = ∅

S

NP

PN

Joe

VP

Cop

is

AdjP

Adj

sick

(A′) An alternative way to present the grammar is to
adopt a notation closer to the one used by computer
scientists (0 represents the semantics value of the
left-hand side of the rule (the root of the local tree),
1, 2, 3, etc. represent the semantic values of the right-
hand side symbols of the rule (the daughters of the
tree)).

S → NP VP
0 ← ( 2 ) 1

VP → Cop AdjP
0 ← 2

AdjP → Adj
0 ← 1

NP → PN
0 ← 1

Adj → sick
0 ← λx.Sx

PN → Joe
0 ← j

Cop → is
0 ← ∅

(B) The “decorated” tree on the right contains es-
sentially the same information as the grammar(s)
above. We’ve added the types of λ-terms which are
useful to understand in which order the terms are
meant to combine.

S
t

(λx.Sx) j =β Sj

NP
e

j

PN
e

j

Joe
e

j

VP
〈e, t〉
λx.Sx

Cop
−
∅

is
−
∅

AdjP
〈e, t〉
λx.Sx

Adj
〈e, t〉
λx.Sx

sick
〈e, t〉
λx.Sx

(B) Let’s now assume that is has a semantic contribution corresponding to the identity function, of which the
only role is to make sure that the λ-term that corresponds to the predicate is passed up in the tree. Give the
correct λ-term that should be associated with is. Of what type is this term ? Show that the β-reduction(s)
yield the expected result.

The λ-term associated with is is (a version of) the identity function

λP.P , where P is a type 〈e, t〉 variable. Consequently, the type of
the λ-term is 〈〈e, t〉, 〈e, t〉〉.

Computation:
(([[is]]) [[sick]]) [[Joe]]

= ((λP.P ) λx.Sx) j
=β (λx.Sx) j
=β Sj
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Note: it was also possible to have a computation working with the

term λP.λz.(P )z , which have the same type 〈〈e, t〉, 〈e, t〉〉. The

computation has one more β-reduction but yields the right result.
However, this term is not the most general way to encode the identity
function and it doesn’t bring much in this case.

Computation:
(([[is]]) [[sick]]) [[Joe]]

= ((λP.λz.(P )z)λx.Sx) j
=β (λz.(λx.Sx)z) j
=β (λz.Sz) j
=β Sj

(C) Let’s consider the λ-term (12). Give the type of all its subformulae and of its variables, assuming that x is
of type e. S is a predicate constant.

(12) λQλx. ((S)x ∧ (Q)x)

Since we know that x is of type e, Q (which is functionally applied to x) has to have a type of the form
〈e,X〉. In addition, since conjunctions can only connect type t expressions, we know that (Q)x is of type
t. Therefore Q has to be of type 〈e, t〉. This fixes the types of all the other subformulae.

The simplest way to make sure we deal
with all the term’s subformulae is to rep-
resent it by a syntactic tree, in which (al-
most) every node is a subformulae (in fact
the left node of lambda-abstractions shows
the variable introduce by the lambda, it’s
not strictly a subformula of the formula).

λQλx. ((S)x ∧ (Q)x)
〈〈e, t〉, 〈e, t〉〉

λQ

〈e, t〉
λx. ((S)x ∧ (Q)x)

〈e, t〉

λx

e

((S)x ∧ (Q)x)
t

(S)x
t

S

〈e, t〉
x

e

(Q)x
t

Q

〈e, t〉
x

e

More inline with what was done in class, this alternative
representation could also be proposed, in which every
node indicates the nature of the syntactic rule (la means
lambda-abstraction, fa means functional application).

la
〈〈e, t〉, 〈e, t〉〉

λQλx. ((S)x ∧ (Q)x)

var
〈e, t〉

Q

la
〈e, t〉

λx. ((S)x ∧ (Q)x)

var
e

x

cunj
t

((S)x ∧ (Q)x)

fa
t

(S)x

const
〈e, t〉

S

var
e

x

fa
t

(Q)x

var
〈e, t〉

Q

var
e

x

(D) Consider the sentence (13).

(13) Joe is sick and depressed.

We suppose first that the syntax of the adjectival phrase sick and depressed is “flat”, given by the rule

AP → A′ and A′ . As a consequence, we assume a composition rule of the form 0← ((2)1)3 . Which

λ-term can we associate with and to get the correct representation for (13)?

The lambda term for and has to be able to apply in
succession to two predicates (type 〈e, t〉), and make
sure those two predicates apply to the same variable
to form a new predicate. This is why we can propose

the term λQ.λR.λx. ((Q)x ∧ (R)x) . The subtree on

the right illustrates the computation.
Computation:

((2)1)3
= ((λQ.λR.λx. ((Q)x ∧ (R)x))λa.Sa)λb.Db
=β (λR.λx. ((λa.Sa)x ∧ (R)x))λb.Db
=β (λR.λx. (Sx ∧ (R)x))λb.Db
=β λx. (Sx ∧ (λb.Db)x)
=β λx. (Sx ∧Dx)

AdjP
〈e, t〉

λx.(Sx ∧ Dx)

sick
〈e, t〉
λa.Sa

and
〈〈e, t〉, 〈e, t〉〉

λQ.λR.λx. ((Q)x ∧ (R)x)

depressed
〈e, t〉
λb.Db
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(E) We assume now that the syntax of coordinated adjectives is not flat, in order to get a binary syntactic tree.

The grammar now contains rules of the form AP → A′
CoordP and CoordP → and A′ . What difference

does it make with the preceding proposal ?

The type and form of the representation of
and is unchanged, the only thing changing
is the set of semantic rules associated with
syntax. Instead of the description on the
left (corresponding to question D), we have
the one on the right.

AP → A′ and A′

0 ← (( 2 ) 1) 3
AP → A′ CoordP
0 ← ( 2 ) 1
CoordP → and A′

0 ← ( 1 ) 2

(F) We now associate the λ-term λP. (P )j to the proper noun Joe. Under this new hypothesis, propose a

complete fragment that includes both (11) and (13) (with the options taken in questions B and D).

The complete fragment, using the generalised quantifier approach, is described by the following grammar.
According to this grammar the complete computation can be summarized by the “formula”:

(Joe) (is) ((and) sick) depressed

S → NP VP
0 ← ( 1 ) 2
VP → Cop AdjP
0 ← ( 1 ) 2
AdjP → Adj
0 ← 1
AdjP → AdjP Cunj AdjP
0 ← ( ( 2 ) 1 ) 3
NP → PN
0 ← 1

Adj → sick
0 ← λa.Sa
Adj → depressed
0 ← λb.Db
PN → Joe
0 ← λP.Pj
Cop → is
0 ← λP.P
Cunj → and
0 ← λQ.λR.λx.((Q)x ∧ (R)x)

(G) Consider the sentence (14).

(14) A sick man entered.

We assume that the λ-term to be associated with sick is (12). Show that the combination with man will yield
an expression of the right type.

Computation: ([[sick]]) [[man]]
= (λQ.λx.((S)x ∧ (Q)x)) λa.Ma
=β λx.((S)x ∧ (λa.Ma)x)
=β λx.((S)x ∧ (M)x)

The outcome is a (complex) predicate, of type 〈e, t〉, which is what is expected (same type as man).

(H) If now we want the contribution of the adjective sick to be λx. (S)x we need to introduce en operator Φ

such that (Φ)λx.(S)x =β λQλx. ((S)x ∧ (Q)x) . Propose a definition for Φ and give its type.

Φ = λR.λQ.λx.(Rx ∧Qx), and its type is 〈〈e, t〉, 〈〈e, t〉, 〈e, t〉〉〉

(I) Enrich the previous fragment so that (14) will get compositionaly the representation (15) (where Sx means
(S)x, etc.).

(15) ∃x ((Sx ∧Mx) ∧Ex)

What is needed to have a complete fragment, given what we already have, is to express how an adjective
like sick, when operating as a modifier, has to be type-raised to combine with its head. The rest of
the grammar is already known, assuming that the indefinite determiner has the usual quantificational
representation. The tree below summarizes the proposition.
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S → NP VP
0 ← ( 1 ) 2
VP → Cop AdjP
0 ← ( 1 ) 2
VP → V
0 ← 1
AdjP → Adj
0 ← 1
AdjP → AdjP Cunj AdjP
0 ← ( ( 2 ) 1 ) 3
NP → PN
0 ← 1
NP → Det N′

0 ← ( 1 ) 2
N′ → AdjP N′

0 ← ( ( λR.λQ.λx.(Rx ∧Qx) ) 1 ) 2
N′ → N
0 ← 1

Adj → sick
0 ← λa.Sa
N → man
0 ← λc.Mc
Adj → depressed
0 ← λb.Db
V → entered
0 ← λd.Ed
PN → Joe
0 ← λP.Pj
Cop → is
0 ← λP.P
Cunj → and
0 ← λQ.λR.λx.((Q)x ∧ (R)x)
Det → a
0 ← λP.λQ.(Px ∧Qx)

S
t

∃x ((Sx ∧ Mx) ∧ Ex)

NP
〈〈e, t〉, t〉

λQ.∃x((Sx ∧ Mx) ∧ Qx)

Det
〈et, 〈〈e, t〉, t〉〉

λP.λQ.∃x(Px ∧ Qx)

a
〈et, 〈〈e, t〉, t〉〉

λP.λQ.∃x(Px ∧ Qx)

N′

〈e, t〉
((Φ)λa.Sa)λc.Mc

= λx.(Sx ∧ Mx)

Adj
〈e, t〉
λa.Sa

sick
〈e, t〉
λa.Sa

N′

〈e, t〉
λc.Mc

N
〈e, t〉
λc.Mc

man
〈e, t〉
λc.Mc

VP
〈e, t〉
λd.Ed

V
〈e, t〉
λd.Ed

entered
〈e, t〉
λd.Ed
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