
Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Formal Languages and Linguistics

Pascal Amsili

Sorbonne Nouvelle, Lattice (CNRS/ENS-PSL/SN)

Cogmaster, september 2021

1 / 110

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

General introduction

1. Mathematicians (incl. Chomsky) have formalized the notion of
language It might be thought of as an

oversimplification,
always the same story...

2. It buys us:
2.1 Tools to think about theoretical issues about language/s

(expressiveness, complexity, comparability...)
2.2 Tools to manipulate concretely language (e.g. with computers)
2.3 A research programme:

• Represent the syntax of natural language in a fully
unambiguously specified way

Now let’s get familiar with the mathematical notion of language

2 / 110

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Basic concepts

Overview

Formal Languages
Basic concepts
Definition
Questions

Regular Languages

Formal Grammars

Formal complexity of Natural Languages

3 / 110

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Basic concepts

Alphabet, word

Def. 1 (Alphabet)

An alphabet ⌃ is a finite set of symbols (letters).
The size of the alphabet is the cardinal of the set.

Def. 2 (Word)

A word on the alphabet ⌃ is a finite sequence of letters from ⌃.
Formally, let [p] = (1, 2, 3, 4, ..., p) (ordered integer sequence).
Then a word is a mapping

u : [p] �! ⌃

p, the length of u, is noted |u|.

4 / 110

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Basic concepts

Examples I
Alphabet { , }
Words

. . .

Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Basic concepts
Definition
Problem

Examples I
Alphabet { , }
Words

. . .
Alphabet { , , , , , . . . }
Words

. . .

5 / 111

5 / 110

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Basic concepts

Examples II

Alphabet {0,1,2,3,4,5,6,7,8,9, · }
Words 235 · 29

007 · 12
·1 · 1 · 00 · ·
3 · 1415962 . . . (⇡)
. . .

Alphabet {a, woman, loves, man }
Words a

a woman loves a woman
man man a loves woman loves a
. . .

6 / 110

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Basic concepts

Monoid

Def. 3 (⌃⇤
)

Let ⌃ be an alphabet.
The set of all the words that can be formed with any number of
letters from ⌃ is noted ⌃⇤

⌃⇤ includes a word with no letter, noted "

Example: ⌃ = {a, b, c}
⌃⇤ = {", a, b, c , aa, ab, ac , ba, . . . , bbb, . . .}

N.B.: ⌃⇤ is always infinite, except. . .

if ⌃ = ;. Then ⌃⇤ = {"}.

7 / 110

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Basic concepts

Monoid

Def. 3 (⌃⇤
)

Let ⌃ be an alphabet.
The set of all the words that can be formed with any number of
letters from ⌃ is noted ⌃⇤

⌃⇤ includes a word with no letter, noted "

Example: ⌃ = {a, b, c}
⌃⇤ = {", a, b, c , aa, ab, ac , ba, . . . , bbb, . . .}

N.B.: ⌃⇤ is always infinite, except. . .
if ⌃ = ;. Then ⌃⇤ = {"}.

7 / 110

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Basic concepts

Structure of ⌃⇤

Let k be the size of the alphabet k = |⌃|.

Then ⌃⇤ contains : k0 = 1 word(s) of 0 letters (")
k1 = k word(s) of 1 letters
k2 word(s) of 2 letters
. . .
kn words of n letters, 8n � 0

8 / 110

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Basic concepts

Representation of ⌃⇤

⌃ = {a, b, c}
"

�
�
�
�
�
�
�

H
H

H
H

H
H

H

a
�
��

H
HH

aa

�
�
�

H
H

H

aaa aab aac ...

ab ac

b
�
��

H
HH

ba bb bc

c
�
��

H
HH

ca cb cc

I Words can be enumerated according to different orders
I ⌃⇤ is a countable set

9 / 110

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Basic concepts

Concatenation
⌃⇤ can be equipped with a binary operation: concatenation

Def. 4 (Concatenation)

Let [p] u�! ⌃, [q] w�! ⌃. The concatenation of u and w , noted
uw (u.w) is thus defined:

uw : [p + q] �! ⌃

uwi =

⇢
ui for i 2 [1, p]
wi�p for i 2 [p + 1, p + q]

Example : u bacba
v cca
uv bacbacca

10 / 110

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Basic concepts

Concatenation
⌃⇤ can be equipped with a binary operation: concatenation

Def. 4 (Concatenation)

Let [p] u�! ⌃, [q] w�! ⌃. The concatenation of u and w , noted
uw (u.w) is thus defined:

uw : [p + q] �! ⌃

uwi =

⇢
ui for i 2 [1, p]
wi�p for i 2 [p + 1, p + q]

Example : u bacba
v cca

uv bacbacca

10 / 110

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Basic concepts

Concatenation
⌃⇤ can be equipped with a binary operation: concatenation

Def. 4 (Concatenation)

Let [p] u�! ⌃, [q] w�! ⌃. The concatenation of u and w , noted
uw (u.w) is thus defined:

uw : [p + q] �! ⌃

uwi =

⇢
ui for i 2 [1, p]
wi�p for i 2 [p + 1, p + q]

Example : u bacba
v cca
uv bacbacca

10 / 110

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Basic concepts

Factor

Def. 5 (Factor)

A factor w of u is a subset of adjascent letters in u.
–w is a factor of u , 9u1, u2 s.t. u = u1wu2
–w is a left factor (prefix) of u , 9u2 s.t. u = wu2
–w is a right factor (suffix) of u , 9u1 s.t. u = u1w

Def. 6 (Factorization)

We call factorization the decomposition of a word into factors.

11 / 110

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Basic concepts

Role of concatenation
1. Words have been defined on ⌃.

If one takes two such words, it’s always possible to form a new
word by concatenating them.

2. Any word can be factorised in many different ways:
a b a c c a b

3. Since all letters of ⌃ form a word of length 1
(this set of words is called the base),

4. any word of ⌃⇤ can be seen as a (unique) sequence of
concatenations of length 1 words :
a b a c c a b
((((((ab)a)c)c)a)b)
((((((a.b).a).c).c).a).b)

12 / 110

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Basic concepts

Role of concatenation
1. Words have been defined on ⌃.

If one takes two such words, it’s always possible to form a new
word by concatenating them.

2. Any word can be factorised in many different ways:
a b a c c a b
(a b a)(c c a b)

3. Since all letters of ⌃ form a word of length 1
(this set of words is called the base),

4. any word of ⌃⇤ can be seen as a (unique) sequence of
concatenations of length 1 words :
a b a c c a b
((((((ab)a)c)c)a)b)
((((((a.b).a).c).c).a).b)

12 / 110

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Basic concepts

Role of concatenation
1. Words have been defined on ⌃.

If one takes two such words, it’s always possible to form a new
word by concatenating them.

2. Any word can be factorised in many different ways:
a b a c c a b
(a b)(a c c)(a b)

3. Since all letters of ⌃ form a word of length 1
(this set of words is called the base),

4. any word of ⌃⇤ can be seen as a (unique) sequence of
concatenations of length 1 words :
a b a c c a b
((((((ab)a)c)c)a)b)
((((((a.b).a).c).c).a).b)

12 / 110

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Basic concepts

Role of concatenation
1. Words have been defined on ⌃.

If one takes two such words, it’s always possible to form a new
word by concatenating them.

2. Any word can be factorised in many different ways:
a b a c c a b
(a b a c c)(a b)

3. Since all letters of ⌃ form a word of length 1
(this set of words is called the base),

4. any word of ⌃⇤ can be seen as a (unique) sequence of
concatenations of length 1 words :
a b a c c a b
((((((ab)a)c)c)a)b)
((((((a.b).a).c).c).a).b)

12 / 110

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Basic concepts

Role of concatenation
1. Words have been defined on ⌃.

If one takes two such words, it’s always possible to form a new
word by concatenating them.

2. Any word can be factorised in many different ways:
a b a c c a b
(a)(b)(a)(c)(c)(a)(b)

3. Since all letters of ⌃ form a word of length 1
(this set of words is called the base),

4. any word of ⌃⇤ can be seen as a (unique) sequence of
concatenations of length 1 words :
a b a c c a b
((((((ab)a)c)c)a)b)
((((((a.b).a).c).c).a).b)

12 / 110

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Basic concepts

Role of concatenation
1. Words have been defined on ⌃.

If one takes two such words, it’s always possible to form a new
word by concatenating them.

2. Any word can be factorised in many different ways:
a b a c c a b
(a)(b)(a)(c)(c)(a)(b)

3. Since all letters of ⌃ form a word of length 1
(this set of words is called the base),

4. any word of ⌃⇤ can be seen as a (unique) sequence of
concatenations of length 1 words :
a b a c c a b
((((((ab)a)c)c)a)b)
((((((a.b).a).c).c).a).b)

12 / 110

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Basic concepts

Properties of concatenation

1. Concatenation is non commutative
2. Concatenation is associative
3. Concatenation has an identity (neutral) element: "

1. uv .w 6= w .uv

2. (u.v).w = u.(v .w)

3. u." = ".u = u
Notation : a.a.a = a3

13 / 110

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Overview

Formal Languages
Basic concepts
Definition
Questions

Regular Languages

Formal Grammars

Formal complexity of Natural Languages

14 / 110

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Language

Def. 7 (Formal Language)

Let ⌃ be an alphabet.
A language on ⌃ is a set of words on ⌃.

or, equivalently,
A language on ⌃ is a subset of ⌃⇤

15 / 110

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Language

Def. 7 (Formal Language)

Let ⌃ be an alphabet.
A language on ⌃ is a set of words on ⌃.
or, equivalently,
A language on ⌃ is a subset of ⌃⇤

15 / 110

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Examples I

Let ⌃ = {a, b, c}.

L1 = {aa, ab, bac} finite language
L2 = {a, aa, aaa, aaaa . . .}

or L2 = {ai / i � 1} infinite language
L3 = {"} finite language,

reduced to a singleton

6=
L4 = ; “empty” language
L5 = ⌃⇤

16 / 110

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Examples I

Let ⌃ = {a, b, c}.

L1 = {aa, ab, bac} finite language

L2 = {a, aa, aaa, aaaa . . .}
or L2 = {ai / i � 1} infinite language

L3 = {"} finite language,
reduced to a singleton

6=
L4 = ; “empty” language
L5 = ⌃⇤

16 / 110

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Examples I

Let ⌃ = {a, b, c}.

L1 = {aa, ab, bac} finite language
L2 = {a, aa, aaa, aaaa . . .}

or L2 = {ai / i � 1} infinite language
L3 = {"} finite language,

reduced to a singleton

6=
L4 = ; “empty” language
L5 = ⌃⇤

16 / 110

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Examples I

Let ⌃ = {a, b, c}.

L1 = {aa, ab, bac} finite language
L2 = {a, aa, aaa, aaaa . . .}

or L2 = {ai / i � 1} infinite language

L3 = {"} finite language,
reduced to a singleton

6=
L4 = ; “empty” language
L5 = ⌃⇤

16 / 110

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Examples I

Let ⌃ = {a, b, c}.

L1 = {aa, ab, bac} finite language
L2 = {a, aa, aaa, aaaa . . .}

or L2 = {ai / i � 1} infinite language
L3 = {"} finite language,

reduced to a singleton

6=
L4 = ; “empty” language
L5 = ⌃⇤

16 / 110

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Examples I

Let ⌃ = {a, b, c}.

L1 = {aa, ab, bac} finite language
L2 = {a, aa, aaa, aaaa . . .}

or L2 = {ai / i � 1} infinite language
L3 = {"} finite language,

reduced to a singleton

6=

L4 = ; “empty” language
L5 = ⌃⇤

16 / 110

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Examples I

Let ⌃ = {a, b, c}.

L1 = {aa, ab, bac} finite language
L2 = {a, aa, aaa, aaaa . . .}

or L2 = {ai / i � 1} infinite language
L3 = {"} finite language,

reduced to a singleton

6=
L4 = ; “empty” language

L5 = ⌃⇤

16 / 110

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Examples I

Let ⌃ = {a, b, c}.

L1 = {aa, ab, bac} finite language
L2 = {a, aa, aaa, aaaa . . .}

or L2 = {ai / i � 1} infinite language
L3 = {"} finite language,

reduced to a singleton

6=
L4 = ; “empty” language
L5 = ⌃⇤

16 / 110

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Examples II

Let ⌃ = {a, man, loves, woman}.

L = { a man loves a woman, a woman loves a man }

Let ⌃0 = {a, man, who, saw, fell}.

L0 =

8
>><

>>:

a man fell,
a man who saw a man fell,
a man who saw a man who saw a man fell,
. . .

9
>>=

>>;

17 / 110

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Examples II

Let ⌃ = {a, man, loves, woman}.

L = { a man loves a woman, a woman loves a man }

Let ⌃0 = {a, man, who, saw, fell}.

L0 =

8
>><

>>:

a man fell,
a man who saw a man fell,
a man who saw a man who saw a man fell,
. . .

9
>>=

>>;

17 / 110

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Examples II

Let ⌃ = {a, man, loves, woman}.

L = { a man loves a woman, a woman loves a man }

Let ⌃0 = {a, man, who, saw, fell}.

L0 =

8
>><

>>:

a man fell,
a man who saw a man fell,
a man who saw a man who saw a man fell,
. . .

9
>>=

>>;

17 / 110

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Examples II

Let ⌃ = {a, man, loves, woman}.

L = { a man loves a woman, a woman loves a man }

Let ⌃0 = {a, man, who, saw, fell}.

L0 =

8
>><

>>:

a man fell,
a man who saw a man fell,
a man who saw a man who saw a man fell,
. . .

9
>>=

>>;

17 / 110

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Set operations

Since a language is a set, usual set operations can be defined:
I union
I intersection
I set difference

) One may describe a (complex) language as the result of set
operations on (simpler) languages:
{a2k / k > 1} = {a, aa, aaa, aaaa, . . .} \ {ww / w 2 ⌃⇤}

18 / 110

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Set operations

Since a language is a set, usual set operations can be defined:
I union
I intersection
I set difference

) One may describe a (complex) language as the result of set
operations on (simpler) languages:
{a2k / k > 1} = {a, aa, aaa, aaaa, . . .} \ {ww / w 2 ⌃⇤}

18 / 110

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Additional operations

Def. 8 (product operation on languages)

One can define the language product and its closure the Kleene
star operation:
I The product of languages is thus defined:

L1.L2 = {uv / u 2 L1 & v 2 L2}

Notation:
k timesz }| {

L.L.L . . . L = Lk ; L0 = {"}
I The Kleene star of a language is thus defined:

L⇤ =
S

n>0 L
n

19 / 110

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Regular expressions

It is common to use the 3 rational operations:
I union
I product
I Kleene star

to characterize certain languages...

({a} [{b})⇤.{c} = {c , ac , abc , bc , . . . , baabaac , . . .}
(simplified notation (a|b)⇤c — regular expressions)

... but not all languages can be thus characterized.

20 / 110

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Regular expressions

It is common to use the 3 rational operations:
I union
I product
I Kleene star

to characterize certain languages...

({a} [{b})⇤.{c} = {c , ac , abc , bc , . . . , baabaac , . . .}
(simplified notation (a|b)⇤c — regular expressions)

... but not all languages can be thus characterized.

20 / 110

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Regular expressions

It is common to use the 3 rational operations:
I union
I product
I Kleene star

to characterize certain languages...

({a} [{b})⇤.{c} = {c , ac , abc , bc , . . . , baabaac , . . .}
(simplified notation (a|b)⇤c — regular expressions)

... but not all languages can be thus characterized.

20 / 110

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Questions

Overview

Formal Languages
Basic concepts
Definition
Questions

Regular Languages

Formal Grammars

Formal complexity of Natural Languages

21 / 110

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Questions

Back to “Natural” Languages

English as a formal language:
alphabet: morphemes (often simplified to words —depending on

your view on flexional morphology)
) Finite at a time t by hypothesis

words: well formed English sentences
) English sentences are all finite by hypothesis

language: English, as a set of an infinite number of well formed
combinations of “letters” from the alphabet

22 / 110

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Questions

Discussion I

1. is the alphabet finite?
closed class morphemes obviously
open class morphemes what about “new words”?

morphological derivations can be seen as
produced from an unchanged
inventory (1)

other wordsI loan words (rare)
I lexical inventions (rare)
I change of category (2) (bounded)

) negligable

(1) motherese = mother+ese

23 / 110

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Questions

Discussion II

(2) americanA ! americanN

2. is English infinite ?
I It is supposed that you can always profer a longer sentence

than the previous one by adding linguistic material preserving
well-formedness.

I Compatible with the working memory limit
(Langendoen & Postal, 1984)

3. is language discrete ?
Well, that’s another story

24 / 110

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Questions

About infinity

Linguists sometimes have trouble with infinity:
In order for there to be an infinite number of sentences in a
language there must either be an infinite number of words
in the language (clearly not true) or there must be the possibility
of infinite length sentences. The product of two finite numbers
is always a finite number. (Mannell, 1999)

and many others

!! WRONG !!

The whole point of formal languages is that they are
::::::
infinite sets

of
::::::
finite words on a

:::::
finite alphabet.

von Humbolt: language is an infinite use of finite means
(quoted by Chomsky)

25 / 110

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Questions

About infinity

Linguists sometimes have trouble with infinity:
In order for there to be an infinite number of sentences in a
language there must either be an infinite number of words
in the language (clearly not true) or there must be the possibility
of infinite length sentences. The product of two finite numbers
is always a finite number. (Mannell, 1999)

and many others
!! WRONG !!

The whole point of formal languages is that they are
::::::
infinite sets

of
::::::
finite words on a

:::::
finite alphabet.

von Humbolt: language is an infinite use of finite means
(quoted by Chomsky)

25 / 110

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Questions

About infinity

Linguists sometimes have trouble with infinity:
In order for there to be an infinite number of sentences in a
language there must either be an infinite number of words
in the language (clearly not true) or there must be the possibility
of infinite length sentences. The product of two finite numbers
is always a finite number. (Mannell, 1999)

and many others
!! WRONG !!

The whole point of formal languages is that they are
::::::
infinite sets

of
::::::
finite words on a

:::::
finite alphabet.

von Humbolt: language is an infinite use of finite means
(quoted by Chomsky)

25 / 110

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Questions

About infinity

Linguists sometimes have trouble with infinity:
In order for there to be an infinite number of sentences in a
language there must either be an infinite number of words
in the language (clearly not true) or there must be the possibility
of infinite length sentences. The product of two finite numbers
is always a finite number. (Mannell, 1999)

and many others
!! WRONG !!

The whole point of formal languages is that they are
::::::
infinite sets

of
::::::
finite words on a

:::::
finite alphabet.

von Humbolt: language is an infinite use of finite means
(quoted by Chomsky)

25 / 110

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Questions

Good questions

Why would one consider natural language as a formal language?
I it allows to describe the language in a

formal/compact/elegant way
I it allows to compare various languages (via classes of

languages established by mathematicians)
I it give algorithmic tools to recognize and to analyse words

of a language.

recognize u : decide whether u 2 L
analyse u : show the internal structure of u

26 / 110

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Overview

Formal Languages

Regular Languages
Definition
Automata
Properties

Formal Grammars

Formal complexity of Natural Languages

27 / 110

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Definition
3 possible definitions

1. a regular language can be generated by a regular grammar
2. a regular language can be defined by rational expressions
3. a regular language can be recognized by a finite automaton

Def. 9 (Rational Language)

A rational language on ⌃ is a subset of ⌃⇤ inductively defined thus:
I ; and {"} are rational languages ;
I for all a 2 X , the singleton {a} is a rational language ;
I for all g and h rational, the sets g [h, g .h and g⇤ are rational

languages.

28 / 110

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Automata

Overview

Formal Languages

Regular Languages
Definition
Automata
Properties

Formal Grammars

Formal complexity of Natural Languages

29 / 110

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Automata

Metaphoric definition

$

30 / 110

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Automata

Formal definition

Def. 10 (Finite deterministic automaton (FDA))

A finite state deterministic automaton A is defined by :
A = hQ,⌃, q0,F , �i

Q is a finite set of states
⌃ is an alphabet
q0 is a distinguished state, the initial state,
F is a subset of Q, whose members are called

final/terminal states
� is a mapping fonction from Q ⇥ ⌃ to Q.

Notation �(q, a) = r .

31 / 110

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Automata

Example
Let us consider the (finite) language {aa, ab, abb, acba, accb}.
The following automaton recognizes this langage: hQ,⌃, q0,F , �i,
avec Q = {1, 2, 3, 4, 5, 6, 7}, ⌃ = {a, b, c}, q0 = 1, F = {3, 4}, and
� is thus defined:
� : (1,a) 7! 2

(2,a) 7! 3
(2,b) 7! 4
(2,c) 7! 5
(4,b) 7! 3
(5,b) 7! 6
(5,c) 7! 7
(6,a) 7! 3
(7,b) 7! 3

b

1 76

5

4

3

2
a

c

b
a

c

b

b

a
a b c

! 1 2
2 3 4 5

 3
 4 3

5 6 7
6 3
7 3

32 / 110

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Automata

Recognition

Recognition is defined as the existence of a sequence of states
defined in the following way. Such a sequence is called a path in
the automaton.

Def. 11 (Recognition)

A word a1a2...an is recognized/accepted by an automaton iff
there exists a sequence k0, k1, ..., kn of states such that:

k0 = q0
kn 2 F
8i 2 [1, n], �(ki�1, ai) = ki

33 / 110

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Automata

Example

b

a a

a,c

a,ca,b

c

b

c

b

34 / 110

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Automata

Exercices

Let ⌃ = {a, b, c}. Give deterministic finite state automata that
accept the following languages:

1. The set of words with an even length.
2. The set of words where the number of occurrences of b is

divisible by 3.
3. The set of words ending with a b.
4. The set of words not ending with a b.
5. The set of words non empty not ending with a b.
6. The set of words comprising at least a b.
7. The set of words comprising at most a b.
8. The set of words comprising exactly one b.

35 / 110

	Formal Languages
	Basic concepts

	Regular Languages
	Formal Grammars
	Formal complexity of Natural Languages
	References

