
Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Syntactic Formalisms

Pascal Amsili (slides from Markus Disckinson)

Sorbonne Nouvelle, Lattice (CNRS/ENS-PSL)

Cogmaster, october 2020

1 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Syntactic analysis
Computational Formalisms
Formalisms

Slides borrowed to Markus Dickinson
(md7 AT edu.indiana (flipped around, of course))

Class: “Alternative Syntactic Theories” (L614 Spring 2010)

2 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Syntactic analysis
Computational Formalisms
Formalisms

Overview

1 Introduction
Syntactic analysis
Computational Formalisms
Formalisms

2 Dependency Grammars

3 Tree Adjoing Grammar

4 Lexical-functional Grammar

5 Head-Driven PS Grammar
3 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Syntactic analysis
Computational Formalisms
Formalisms

Syntactic analysis

• Generative grammar = collection of words and rules with which we generate
strings of those words, i.e., sentences

• Syntax attempts to capture the nature of those rules

(1) Colorless green ideas sleep furiously.
(2) *Furiously sleep ideas green colorless.

• What generalizations are needed to capture the difference between
grammatical sentences and ungrammatical sentences?

2/25

4 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Syntactic analysis
Computational Formalisms
Formalisms

Syntax: What does it mean?

Can view a syntactic theory in a number of ways, two of which are the following:

• Psychological model: syntactic structures correspond to what is in the heads
of speakers

• Computational model: syntactic structures are formal objects which can be
mathematically manipulated.

⇒ We will focus on the computational way of viewing grammar for this class

3/25

5 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Syntactic analysis
Computational Formalisms
Formalisms

Formalism vs. theory

Will we actually look at theories? ... Sort of.

• A theory describes a set of data and makes predictions for new data

– In this class, we will emphasize theories which are testable, i.e., can be
verified or falsified

• A formalism provides a way of defining a theory with mathematical rigor

– It is essentially a set of beliefs and conditions that frame how
generalizations can be made.

The course name (Alternative Syntactic Theories) is a bit of a misnomer: we will
actually be focusing on formalisms, and we will use theories to exemplify them.

4/25

6 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Syntactic analysis
Computational Formalisms
Formalisms

The Transformational tradition

Roughly speaking, transformational syntax (GB, P&P, ...) has focused on the
following:

• Explanatory adequacy: the data must fit with a deeper model, that of
universal grammar

• Psychological: does the grammar make sense in light of what we know of how
the mind works?

• Universality: generalizations must be applicable to all languages

• Transformations/Movement: (surface) sentences are derived from underlying
other sentences, e.g. passives are derived from active sentences

But this kind of theory often doesn’t lend itself well to computational applications

5/25

7 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Syntactic analysis
Computational Formalisms
Formalisms

Alternative assumptions

• Prioritize descriptive adequacy over explanatory adequacy

• Prioritize computational effectiveness over psychological reality

– e.g., movement is disfavored

• Prioritize description in one language before dealing with all languages

The data will always be the same, but how you handle it, as we’ll see, depends
largely upon your assumptions

6/25

8 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Syntactic analysis
Computational Formalisms
Formalisms

Overview

1 Introduction
Syntactic analysis
Computational Formalisms
Formalisms

2 Dependency Grammars

3 Tree Adjoing Grammar

4 Lexical-functional Grammar

5 Head-Driven PS Grammar
9 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Syntactic analysis
Computational Formalisms
Formalisms

Making it computational

How is a grammatical theory useful for computational lingusitics?

• Parsing: take an input sentence and return the syntactic analysis and/or state
whether it is a valid sentence

• Generation: take a meaning representation and generate a valid sentence

⇒ Both tasks are often subparts of practical applications (e.g., dialogue systems)

7/25

10 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Syntactic analysis
Computational Formalisms
Formalisms

Computational needs

To use a grammar for parsing or generation, we need to have a grammar that
meets several criteria:

• Accurate: gives a correct analysis

• Precise: tells a computer exactly what it is that you want it to do

• Efficient: able to parse a sentence and return one or only a small number of
parses

• Useful: is relatively easy to map a syntactic structure of a sentence to its
meaning

⇒ These needs are not necessarily why the computational formalisms were
developed, but they are some of the reasons why people use them.

8/25

11 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Syntactic analysis
Computational Formalisms
Formalisms

Computational Grammar Formalisms

The formalisms we will look at this quarter generally share several properties:

• Descriptive adequacy

• Precise encodings (implementable)

• Constrained mathematical formalisms

• Monostratal frameworks

• (Usually) highly lexical

9/25

12 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Syntactic analysis
Computational Formalisms
Formalisms

Descriptive adequacy

Some researchers try to explain the underlying mechanisms, but we are most
concerned with being able to describe linguistic phenomena

• Provide a structural description for every well-formed sentence

– Define which sentences are well-formed and which are not in a language

• Give us an accurate encoding of a language

• Interested in broad-coverage, i.e., can (try to) describe all of a language

→ less of a distinction between core and periphery phenomena

10/25

13 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Syntactic analysis
Computational Formalisms
Formalisms

Precise encodings

Mathematical formalism: formal way to generate sets of strings

Precisely define:

• elementary structures

• ways of combining those structures

⇒ Such an emphasis on mathematical precision makes these grammar formalisms
more easily implementable

• Will 2 parts of your grammar conflict?

• If we have precisely encoded the grammar, we can answer this question with
certainty.

11/25

14 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Syntactic analysis
Computational Formalisms
Formalisms

Constrained mathematical formalisms

Formalism should (arguably) be constrained, i.e., cannot be allowed to specify
all strings

• Linguistic motivation: Limits the scope of the theory of grammar

• Computational motivation: Allows us to define efficient processing models

This is different than constraining a theory

• What is the minimum amount of mathematical overhead that we need to
describe language?

12/25

15 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Syntactic analysis
Computational Formalisms
Formalisms

Monostratal frameworks

Only have one (surface) syntactic level

• Make no recourse to movement or transformations

• Augment your basic (phrase structure) tree with information that can describe
“movement” phenomena

– Need some way to relate different structures (e.g., active and passive)
without invoking, e.g., traces

⇒ Without having to refer to movement, easier to process sentences on a
computer.

13/25

16 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Syntactic analysis
Computational Formalisms
Formalisms

Lexical

In the past, rules applied to broad classes and only some information was put in
the lexicon, e.g., subcategorization information.

But more and more theories emphasize the role of individual lexical items in
grammatical constructions

• Linguistic motivation: lexicon best way to specify some generalizations: He
told/*divulged me the truth

• Computational motivation: can derive lexical information from corpora

⇒ Shift more of the information to the lexicon; each lexical item may be a
complex object.

14/25

17 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Syntactic analysis
Computational Formalisms
Formalisms

Brief mention of complexity

We have touched on the complexity of different formalisms

Type Automaton Grammar
Memory Name Rule Name

0 Unbounded TM α → β General rewrite
1 Bounded LBA β A γ → β δ γ Context-sensitive
2 Stack PDA A → β Context-free
3 None FSA A → xB, A → x Right linear

• TM: Turing Machine

• LBA: Linear-Bounded Automaton

• PDA: Push-Down Automaton

• FSA: Finite-State Automaton

15/25

18 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Syntactic analysis
Computational Formalisms
Formalisms

Criteria under which to evaluate grammar formalisms

There are three kinds of criteria:

• linguistic naturalness

• mathematical power

• computational effectiveness and efficiency

The weaker the type of grammar:

• the stronger the claim made about possible languages

• the greater the potential efficiency of the parsing procedure

Reasons for choosing a stronger grammar class:

• to capture the empirical reality of actual languages

• to provide for elegant analyses capturing more generalizations (→ more
“compact” grammars)

16/25

19 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Syntactic analysis
Computational Formalisms
Formalisms

Overview

1 Introduction
Syntactic analysis
Computational Formalisms
Formalisms

2 Dependency Grammars

3 Tree Adjoing Grammar

4 Lexical-functional Grammar

5 Head-Driven PS Grammar
20 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Syntactic analysis
Computational Formalisms
Formalisms

Are CFGs good enough?

• Data from Swiss German and other languages show that CFGs are not
powerful enough to handle all natural language constructions

• CFGs are not easily lexicalized (and we need lexical knowledge)

• CFGs become complicated once we start taking into account agreement
features, verb subcategorizations, unbounded dependency constructions,
raising constructions, etc.

We need more refined formalisms ...

18/25

21 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Syntactic analysis
Computational Formalisms
Formalisms

Beyond CFGs

We want to move beyond CFGs to better capture language, but maintain that
level of precision

We can look at it a couple of ways:

• Extend the basic model of CFGS with, e.g., complex categories, functional
structure, feature structures, ...

• Eliminate CFG model (or derive it some other way)

The frameworks we will investigate take one of these approaches

19/25

22 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Syntactic analysis
Computational Formalisms
Formalisms

Various formalisms

What we plan to have a look at:
Dependency Grammar (DG)
Tree-Adjoining Grammar (TAG)
Lexical-Functional Grammar (LFG)
Head-driven Phrase Structure Grammar (HPSG)
Combinatory Categorial Grammar (CCG)

23 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Syntactic analysis
Computational Formalisms
Formalisms

Dependency Grammar (DG)

• The way to analyze a sentence is by looking at the relations between words

• No grouping, or constituency, is used

– DG traditions are often completely independent of constituency-based
traditions (e.g., CFGs)

– DG is not a unified framework; there are a host of different frameworks
within this tradition

• A verb and its arguments drive an analysis, which is closely related to the
semantics of a sentence

Some of the other frameworks we’ll investigate utilize insights from DG

21/25

24 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Syntactic analysis
Computational Formalisms
Formalisms

Tree-Adjoining Grammar (TAG)

The analysis looks like a CFG tree, but the way to get it is completely different ...

• Elementary structures are trees of arbitrary height

• Trees are rooted in lexical items, i.e. lexicalized

– In other words, the lexicon contains tree fragments as parts of lexical entries

• Put trees together by substituting and adjoining them, resulting in a final tree
which looks like a CFG-derived tree

22/25

25 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Syntactic analysis
Computational Formalisms
Formalisms

Lexical-Functional Grammar (LFG)

• Functional structure (subject, object, etc.) divided from constituent structure
(tree structure)

– Kind of like combining dependency structure with phrase structure
– The f-structures are potentially very complex, however.

• Can express some generalizations in f-structure; some in c-structure;

– i.e., not restricted to saying everything in terms of trees

23/25

26 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Syntactic analysis
Computational Formalisms
Formalisms

Head-driven Phrase Structure Grammar (HPSG)

• Sentences, phrases, and words all uniformly treated as linguistic signs, i.e.,
complex objects of features

– Many analyses rely on a CFG backbone, but this need not be so.

• Similar to LFG in its use of a feature architecture

• Uses an inheritance hierarchy to relate different types of objects (e.g., nouns
and determiners are both types of nominals)

24/25

27 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Syntactic analysis
Computational Formalisms
Formalisms

Combinatory Categorial Grammar (CCG)

• Categorial Grammar derives sentences in a proof-solving manner, maintaining
a close link with a semantic representation

• Lexical categories specify how to combine words into sentences

– The idea of selection is crucial, e.g., a verb will select for the number and
type of arguments

– Again, lexical entries contain tree-like information

• CCG has sophisticated mechnisms that deal nicely with coordination,
extraction, and other constructions

25/25

28 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Presentation
Discussion
Conclusion

Overview

1 Introduction

2 Dependency Grammars
Presentation
Discussion
Conclusion

3 Tree Adjoing Grammar

4 Lexical-functional Grammar

5 Head-Driven PS Grammar
29 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Presentation
Discussion
Conclusion

Introduction

Dependency Grammar

◮ Not a coherent grammatical framework: wide range of
different kinds of DG

◮ just as there are wide ranges of ”generative syntax”

◮ Different core ideas than phrase structure grammar

◮ We will base a lot of our discussion on [Mel’čuk(1988)]

Dependency grammar is important for those interested in CL:

◮ Increasing interest in dependency-based approaches to
syntactic parsing in recent years (e.g., CoNLL-X shared task,
2006)

Dependency Grammar 2(29)

30 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Presentation
Discussion
Conclusion

Introduction

Dependency Syntax

◮ The basic idea:
◮ Syntactic structure consists of lexical items, linked by binary

asymmetric relations called dependencies.

◮ In the (translated) words of Lucien Tesnière [Tesnière(1959)]:
◮ The sentence is an organized whole, the constituent elements of

which are words. [1.2] Every word that belongs to a sentence ceases

by itself to be isolated as in the dictionary. Between the word and

its neighbors, the mind perceives connections, the totality of which

forms the structure of the sentence. [1.3] The structural

connections establish dependency relations between the words. Each

connection in principle unites a superior term and an inferior term.

[2.1] The superior term receives the name governor. The inferior

term receives the name subordinate. Thus, in the sentence Alfred

parle [. . . ], parle is the governor and Alfred the subordinate. [2.2]

Dependency Grammar 3(29)

31 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Presentation
Discussion
Conclusion

Introduction

Overview: constituency

(1) Small birds sing loud songs

What you might be more used to seeing:

Small birds

NP

sing

loud songs

NP

VP

S

Dependency Grammar 4(29)

32 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Presentation
Discussion
Conclusion

Introduction

Overview: dependency

The corresponding dependency tree representations [Hudson(2000)]:

Small birds sing loud songs

nmod sbj nmod

obj

small

nmod

birds

loud

nmod

songs

sbj obj

sing

Dependency Grammar 5(29)

33 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Presentation
Discussion
Conclusion

Introduction

Constituency vs. Relations

◮ DG is based on relationships between words, i.e., dependency
relations

◮ A → B means A governs B or B depends on A ...
◮ Dependency relations can refer to syntactic properties,

semantic properties, or a combination of the two

→ Some variants of DG separate syntactic and semantic relations
by representing different layers of dependency structures

◮ These relations are generally things like subject,
object/complement, (pre-/post-)adjunct, etc.

◮ Subject/Agent: John fished.
◮ Object/Patient: Mary hit John.

◮ PSG is based on groupings, or constituents
◮ Grammatical relations are not usually seen as primitives, but as

being derived from structure

Dependency Grammar 6(29)

34 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Presentation
Discussion
Conclusion

Introduction

Simple relation example

For the sentence John loves Mary, we have the relations:

◮ loves →subj John

◮ loves →obj Mary

Both John and Mary depend on loves, which makes loves the head,
or root, of the sentence (i.e., there is no word that governs loves)

◮ The structure of a sentence, then, consists of the set of
pairwise relations among words.

Dependency Grammar 7(29)

35 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Presentation
Discussion
Conclusion

Introduction

Dependency Structure

Economic news had little effect on financial markets .

obj

p

sbjnmod nmod nmod

pc

nmod

Dependency Grammar 8(29)

36 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Presentation
Discussion
Conclusion

Introduction

Terminology

Superior Inferior
Head Dependent
Governor Modifier
Regent Subordinate
...

...

Dependency Grammar 9(29)

37 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Presentation
Discussion
Conclusion

Introduction

Notational Variants

had

news

sbj

Economic

nmod
effect

obj

little

nmod

on

nmod

markets

pc

financial

nmod

.

p

Dependency Grammar 10(29)

38 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Presentation
Discussion
Conclusion

Introduction

Notational Variants

VBD

NN NN PU

JJ JJ IN

NNS

JJ

Economic news had little effect on financial markets .

obj

p

nmod

sbj

nmod nmod

pc

nmod

Dependency Grammar 10(29)

39 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Presentation
Discussion
Conclusion

Introduction

Notational Variants

Economic news had little effect on financial markets .

obj

p

sbjnmod nmod nmod

pc

nmod

Dependency Grammar 10(29)

40 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Presentation
Discussion
Conclusion

Introduction

Notational Variants

Economic news had little effect on financial markets .

obj

p

sbjnmod nmod nmod

pc

nmod

Dependency Grammar 10(29)

41 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Presentation
Discussion
Conclusion

Introduction

Phrase Structure

JJ

Economic

NN

news

NP

VBD

had

VP

S

JJ

little

NN

effect

NP

NP

IN

on

PP

JJ

financial

NNS

markets

NP PU

.

Dependency Grammar 11(29)

42 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Presentation
Discussion
Conclusion

Introduction

Comparison

◮ Dependency structures explicitly represent
◮ head-dependent relations (directed arcs),
◮ functional categories (arc labels),
◮ possibly some structural categories (parts-of-speech).

◮ Phrase structures explicitly represent
◮ phrases (nonterminal nodes),
◮ structural categories (nonterminal labels),
◮ possibly some functional categories (grammatical functions).

◮ Hybrid representations may combine all elements.

Dependency Grammar 12(29)

43 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Presentation
Discussion
Conclusion

Introduction

Some Theoretical Frameworks

◮ Word Grammar (WG) [Hudson(1984), Hudson(1990)]

◮ Functional Generative Description (FGD)
[Sgall et al.(1986)Sgall, Hajičová and Panevová]

◮ Dependency Unification Grammar (DUG)
[Hellwig(1986), Hellwig(2003)]

◮ Meaning-Text Theory (MTT) [Mel’čuk(1988)]

◮ (Weighted) Constraint Dependency Grammar ([W]CDG)
[Maruyama(1990), Harper and Helzerman(1995),

Menzel and Schröder(1998), Schröder(2002)]

◮ Functional Dependency Grammar (FDG)
[Tapanainen and Järvinen(1997), Järvinen and Tapanainen(1998)]

◮ Topological/Extensible Dependency Grammar ([T/X]DG)
[Duchier and Debusmann(2001),

Debusmann et al.(2004)Debusmann, Duchier and Kruijff]

Dependency Grammar 13(29)

44 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Presentation
Discussion
Conclusion

Overview

1 Introduction

2 Dependency Grammars
Presentation
Discussion
Conclusion

3 Tree Adjoing Grammar

4 Lexical-functional Grammar

5 Head-Driven PS Grammar
45 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Presentation
Discussion
Conclusion

Introduction

Some Theoretical Issues

◮ Dependency structure sufficient as well as necessary?

◮ Mono-stratal or multi-stratal syntactic representations?
◮ What is the nature of lexical elements (nodes)?

◮ Morphemes?
◮ Word forms?
◮ Multi-word units?

◮ What is the nature of dependency types (arc labels)?
◮ Grammatical functions?
◮ Semantic roles?

◮ What are the criteria for identifying heads and dependents?

◮ What are the formal properties of dependency structures?

Dependency Grammar 14(29)

46 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Presentation
Discussion
Conclusion

Introduction

Some Theoretical Issues

◮ Dependency structure sufficient as well as necessary?

◮ Mono-stratal or multi-stratal syntactic representations?
◮ What is the nature of lexical elements (nodes)?

◮ Morphemes?
◮ Word forms?
◮ Multi-word units?

◮ What is the nature of dependency types (arc labels)?
◮ Grammatical functions?
◮ Semantic roles?

◮ What are the criteria for identifying heads and dependents?

◮ What are the formal properties of dependency structures?

Dependency Grammar 14(29)

47 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Presentation
Discussion
Conclusion

Introduction

Criteria for Heads and Dependents

◮ Criteria for a syntactic relation between a head H and a
dependent D in a construction C [Zwicky(1985), Hudson(1990)]:

1. H determines the syntactic category of C ; H can replace C .
2. H determines the semantic category of C ; D specifies H .
3. H is obligatory; D may be optional.
4. H selects D and determines whether D is obligatory.
5. The form of D depends on H (agreement or government).
6. The linear position of D is specified with reference to H .

◮ Issues:
◮ Syntactic (and morphological) versus semantic criteria
◮ Exocentric versus endocentric constructions

Dependency Grammar 15(29)

48 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Presentation
Discussion
Conclusion

Introduction

Some Clear Cases

Construction Head Dependent
Exocentric Verb Subject (sbj)

Verb Object (obj)

Endocentric Verb Adverbial (vmod)
Noun Attribute (nmod)

Economic news suddenly affected financial markets .

objsbj

vmodnmod nmod

Dependency Grammar 16(29)

49 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Presentation
Discussion
Conclusion

Introduction

Some Tricky Cases

◮ Complex verb groups (auxiliary ↔ main verb)

◮ Subordinate clauses (complementizer ↔ verb)

◮ Coordination (coordinator ↔ conjuncts)

◮ Prepositional phrases (preposition ↔ nominal)

◮ Punctuation

I can see that they rely on this and that .

?

Dependency Grammar 17(29)

50 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Presentation
Discussion
Conclusion

Introduction

Some Tricky Cases

◮ Complex verb groups (auxiliary ↔ main verb)

◮ Subordinate clauses (complementizer ↔ verb)

◮ Coordination (coordinator ↔ conjuncts)

◮ Prepositional phrases (preposition ↔ nominal)

◮ Punctuation

I can see that they rely on this and that .

vgsbj sbj

Dependency Grammar 17(29)

51 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Presentation
Discussion
Conclusion

Introduction

Some Tricky Cases

◮ Complex verb groups (auxiliary ↔ main verb)

◮ Subordinate clauses (complementizer ↔ verb)

◮ Coordination (coordinator ↔ conjuncts)

◮ Prepositional phrases (preposition ↔ nominal)

◮ Punctuation

I can see that they rely on this and that .

vgsbj sbj

?

Dependency Grammar 17(29)

52 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Presentation
Discussion
Conclusion

Introduction

Some Tricky Cases

◮ Complex verb groups (auxiliary ↔ main verb)

◮ Subordinate clauses (complementizer ↔ verb)

◮ Coordination (coordinator ↔ conjuncts)

◮ Prepositional phrases (preposition ↔ nominal)

◮ Punctuation

I can see that they rely on this and that .

vgsbj sbj

sbar

obj

Dependency Grammar 17(29)

53 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Presentation
Discussion
Conclusion

Introduction

Some Tricky Cases

◮ Complex verb groups (auxiliary ↔ main verb)

◮ Subordinate clauses (complementizer ↔ verb)

◮ Coordination (coordinator ↔ conjuncts)

◮ Prepositional phrases (preposition ↔ nominal)

◮ Punctuation

I can see that they rely on this and that .

vgsbj sbj

sbar

obj ? ?

Dependency Grammar 17(29)

54 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Presentation
Discussion
Conclusion

Introduction

Some Tricky Cases

◮ Complex verb groups (auxiliary ↔ main verb)

◮ Subordinate clauses (complementizer ↔ verb)

◮ Coordination (coordinator ↔ conjuncts)

◮ Prepositional phrases (preposition ↔ nominal)

◮ Punctuation

I can see that they rely on this and that .

vgsbj sbj

sbar

obj co cj

Dependency Grammar 17(29)

55 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Presentation
Discussion
Conclusion

Introduction

Some Tricky Cases

◮ Complex verb groups (auxiliary ↔ main verb)

◮ Subordinate clauses (complementizer ↔ verb)

◮ Coordination (coordinator ↔ conjuncts)

◮ Prepositional phrases (preposition ↔ nominal)

◮ Punctuation

I can see that they rely on this and that .

vgsbj sbj

sbar

obj co cj?

Dependency Grammar 17(29)

56 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Presentation
Discussion
Conclusion

Introduction

Some Tricky Cases

◮ Complex verb groups (auxiliary ↔ main verb)

◮ Subordinate clauses (complementizer ↔ verb)

◮ Coordination (coordinator ↔ conjuncts)

◮ Prepositional phrases (preposition ↔ nominal)

◮ Punctuation

I can see that they rely on this and that .

vgsbj sbj

sbar

obj co cjpcvc

Dependency Grammar 17(29)

57 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Presentation
Discussion
Conclusion

Introduction

Some Tricky Cases

◮ Complex verb groups (auxiliary ↔ main verb)

◮ Subordinate clauses (complementizer ↔ verb)

◮ Coordination (coordinator ↔ conjuncts)

◮ Prepositional phrases (preposition ↔ nominal)

◮ Punctuation

I can see that they rely on this and that .

vgsbj sbj

sbar

obj co cjpcvc

?

Dependency Grammar 17(29)

58 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Presentation
Discussion
Conclusion

Introduction

Some Tricky Cases

◮ Complex verb groups (auxiliary ↔ main verb)

◮ Subordinate clauses (complementizer ↔ verb)

◮ Coordination (coordinator ↔ conjuncts)

◮ Prepositional phrases (preposition ↔ nominal)

◮ Punctuation

I can see that they rely on this and that .

vgsbj sbj

sbar

obj co cjpcvc

p

Dependency Grammar 17(29)

59 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Presentation
Discussion
Conclusion

Introduction

Dependency Graphs

◮ A dependency structure can be defined as a directed graph G ,
consisting of

◮ a set V of nodes,
◮ a set E of arcs (edges),
◮ a linear precedence order < on V

(not in every theory)

◮ Labeled graphs:
◮ Nodes in V are labeled with word forms (and annotation).
◮ Arcs in E are labeled with dependency types.

◮ Notational conventions (i , j ∈ V ):
◮ i → j ≡ (i , j) ∈ E
◮ i →∗ j ≡ i = j ∨ ∃k : i → k , k →∗ j

Dependency Grammar 18(29)

60 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Presentation
Discussion
Conclusion

Introduction

Formal Conditions on Dependency Graphs

◮ Intuitions:
◮ Syntactic structure is complete (Connectedness).
◮ Syntactic structure is hierarchical (Acyclicity).
◮ Every word has at most one syntactic head (Single-Head).

◮ Connectedness can be enforced by adding a special root node.

Economic news had little effect on financial markets .

obj

sbjnmod nmod nmod

pc

nmod

Dependency Grammar 19(29)

61 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Presentation
Discussion
Conclusion

Introduction

Formal Conditions on Dependency Graphs

◮ Intuitions:
◮ Syntactic structure is complete (Connectedness).
◮ Syntactic structure is hierarchical (Acyclicity).
◮ Every word has at most one syntactic head (Single-Head).

◮ Connectedness can be enforced by adding a special root node.

root Economic news had little effect on financial markets .

obj

p

pred

sbjnmod nmod nmod

pc

nmod

Dependency Grammar 19(29)

62 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Presentation
Discussion
Conclusion

Introduction

Formal Conditions on Dependency Graphs

◮ G is (weakly) connected:
◮ For every node i there is a node j such that i → j or j → i .

◮ G is acyclic:
◮ If i → j then not j →∗ i .

◮ G obeys the single-head constraint:
◮ If i → j , then not k → j , for any k 6= i .

◮ G is projective:
◮ If i → j then i →∗ k , for any k such that i<k< j or j<k< i .

Dependency Grammar 20(29)

63 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Presentation
Discussion
Conclusion

Introduction

Projectivity

Projectivity (or, less commonly, adjacency [Hudson(1990)])

◮ A head (A) and a dependent (B) must be adjacent: A is
adjacent to B provided that every word between A and B is a
subordinate of A.

(2) with great difficulty

(3) *great with difficulty

◮ with → difficulty

◮ difficulty → great

*great with difficulty is ruled out because branches would have to
cross in that case

Dependency Grammar 21(29)

64 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Presentation
Discussion
Conclusion

Introduction

Projectivity

◮ Most theoretical frameworks do not assume projectivity.
◮ Non-projective structures are needed to account for

◮ long-distance dependencies,
◮ free word order.

What did economic news have little effect on ?

obj

vg

p

sbj

nmod nmod nmod

pc

Dependency Grammar 22(29)

65 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Presentation
Discussion
Conclusion

Introduction

Valency and Grammaticality

An important concept in many variants of DG is that of valency =
the ability of a word to take arguments

A lexicon might look like the following
[Hajič et al.(2003)Hajič, Panevová, Urešová, Bémová, Kolá̌rová and Pajas]:

Slot1 Slot2 Slot3
sink1 ACT(nom) PAT(acc)
sink2 PAT(nom)
give ACT(nom) PAT(acc) ADDR(dat)

To determine grammaticality (roughly) ...

1. Words have valency requirements that must be satisfied

2. Apply general rules to the valencies to see if a sentence is valid

Dependency Grammar 23(29)

66 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Presentation
Discussion
Conclusion

Introduction

Capturing Adjuncts and Complements

There are two main kinds of dependencies for A → B:

◮ Head-Complement: if A (the head) has a slot for B, then B is
a complement

◮ Head-Adjunct: if B has a slot for A (the head), then B is an
adjunct

B is dependent on A in either case, but the selector is different

◮ The adjunct/complement distinction is captured in the type of
dependency relation and/or in the lexicon

Dependency Grammar 24(29)

67 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Presentation
Discussion
Conclusion

Introduction

Layers of dependencies

[Mel’čuk(1988)] allows for different dependency layers

It looks like a subject depends on the verb, but the form of the
verb depends on the subject (mutual dependence):

(4) a. The child is playing.

b. The children are playing.

Solution:

◮ Dependence of child/children on the verb is syntactic

◮ Dependence of the verb(form) on the subject is morphological

Dependency Grammar 25(29)

68 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Presentation
Discussion
Conclusion

Introduction

Double dependencies

Likewise, here it seems that clean depends both on the verb wash
and on the noun dish

(5) Wash the dish clean.

Solution:

◮ Dependence of clean on wash is syntactic (cf. case)

◮ Dependence of clean on dish is semantic (cf. gender)

(6) My
We

našli
found

zal
the hallmasc

pust-ym
emptymasc.sg .inst

Dependency Grammar 26(29)

69 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Presentation
Discussion
Conclusion

Introduction

Double dependencies (2)

Hudson’s Word Grammar [Hudson(2004)] explicitly allows for
structure-sharing, explicitly violating the single-head constraint:

◮ wash → clean
◮ dish → clean

NB: Hudson also uses this to account for non-projectivity

Dependency Grammar 27(29)

70 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Presentation
Discussion
Conclusion

Overview

1 Introduction

2 Dependency Grammars
Presentation
Discussion
Conclusion

3 Tree Adjoing Grammar

4 Lexical-functional Grammar

5 Head-Driven PS Grammar
71 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Presentation
Discussion
Conclusion

Introduction

Relation to phrase structure

What is the relation between DG and PSG?

◮ If a PS tree has heads marked, then you can derive the
dependencies

◮ Likewise, a DG tree can be converted into a PS tree by
grouping a word with its dependents

◮ But what the constituents are is still open (binary-branching,
flat)

◮ And phrases are not categorized

Dependency Grammar 28(29)

72 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Presentation
Discussion
Conclusion

Introduction

Advantages and Disadvantages of DG

Advantages:

◮ Close connection to semantic representation

◮ More flexible structure for, e.g., non-constituent coordination

◮ Easier to capture some typological regularities

◮ Vast & expanding body of computational work on dependency
parsing

Disadvantages:

◮ No constituents makes analyzing coordination difficult

◮ No distinction between modifying a constituent vs. an
individual word

◮ Harder to capture things like, e.g., subject-object asymmetries

Dependency Grammar 29(29)

73 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Basic operations
Derived Tree and derivation tree

Overview

1 Introduction

2 Dependency Grammars

3 Tree Adjoing Grammar
Basic operations
Derived Tree and derivation tree

4 Lexical-functional Grammar

5 Head-Driven PS Grammar

74 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Basic operations
Derived Tree and derivation tree

TAG

• Pseudo-extension of CFGs

– Abandon the context-free grammar formalism
– Keep the idea of deriving complete trees in a sequence of rewriting

steps—but in TAG we rewrite trees, not strings

• Highly lexicalized (LTAG):

– Every tree is associated with exactly one lexical item
– Every lexical item is associate with a set of trees

2/43

75 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Basic operations
Derived Tree and derivation tree

Phrase Structure Trees

John

NP

really

likes

V

Lyn

NP

VP

VP

S

(1) a. S → NP VP

b. VP → really VP

c. VP → V NP

d. V → likes

e. NP → John

f. NP → Lyn

3/43

76 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Basic operations
Derived Tree and derivation tree

String rewriting derivation

1. S → NP VP (1a)

2. → John VP (1e)

3. → John really VP (1b)

4. → John really V NP (1c)

5. → John really likes NP (1d)

6. → John really likes Lyn (1f)

4/43

77 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Basic operations
Derived Tree and derivation tree

Tree Substitution Grammars

• Elementary structures are trees

• A down arrow (↓) indicates where a substitution takes place

α1 α2 α3

NP↓

likes

V
NP↓

VP

S

John

NP

Lyn

NP

5/43

78 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Basic operations
Derived Tree and derivation tree

Substitution operation

The substitution operation allows us to insert elementary trees into other
elementary trees

• Where there is a (non-terminal) node marked for substitution (↓) on the
frontier, an elementary tree rooted in the same category can be substituted
there

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

AS

A

A

S

6/43

79 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Basic operations
Derived Tree and derivation tree

Final tree

So, we end up with the following derived tree

John

NP

likes

V

Lyn

NP

VP

S

Notes:

• order of substitutions is irrelevant

• This tree is completed = there are no substitution nodes left on the frontier

7/43

80 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Basic operations
Derived Tree and derivation tree

Elementary trees

Let’s step back a little and look at the building blocks of TAG. Our basic
elements are elementary trees, which come in two guises:

• initial trees, which have:

– root node
– interior nodes labeled by non-terminal symbols
– frontier nodes of terminal and non-terminal symbols; substitution nodes are

marked by the down arrow (↓)
⇒ Tree Substitution Grammars (TSGs) only use initial trees

8/43

81 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Basic operations
Derived Tree and derivation tree

Elementary trees (cont.)

• auxiliary trees, which have

– root node
– interior nodes labeled by non-terminal symbols
– frontier nodes similar to usage in initial trees, but with a designated (*)

foot node = identical label to the root node

⇒ TAGs need auxiliary trees for adjunction

⇒ In LTAG, at least one frontier node must be a terminal symbol (lexical item)

9/43

82 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Basic operations
Derived Tree and derivation tree

Lexicalization

Lexicalization is the process of associating at least one terminal element with
every elementary tree.

Adjunction is necessary if we want to lexicalize the grammars in a linguistically
meaningful way, i.e., substitution isn’t enough.

α1 α2 α3 β1

NP↓

likes

V
NP↓

VP

S

John

NP

Lyn

NP

really VP*

VP

10/43

83 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Basic operations
Derived Tree and derivation tree

The need for adjunction

With the elementary trees above and using only substitution, there is no way to
generate John really likes Lyn.

We would need an elementary tree along the following, unappealing lines:

NP↓

really VP↓

VP

S

11/43

84 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Basic operations
Derived Tree and derivation tree

Adjunction

So, we introduce the adjunction operation, which is where auxiliary trees come
in.

• We can now insert one tree into another, provided that the nodes match up

• That is, an auxiliary tree can modify an XP iff its root and foot nodes are both
labeled XP

Using adjunction and substitution gives us true Tree Adjoining Grammars
(TAGs)

12/43

85 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Basic operations
Derived Tree and derivation tree

Adjunction example

α4 β1 α5

John

NP

likes

V

Lyn

NP

VP

S

really VP*

VP

⇒

John

NP

really

likes

V

Lyn

NP

VP

VP

S

13/43

86 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Basic operations
Derived Tree and derivation tree

Adjunction operation

• An auxiliary tree is inserted into an initial tree (or derived tree) by cutting the
initial/derived tree into two parts, above and below a node (A)

– The node of the root of the auxiliary tree is identified with the node A
– The node of the foot of the auxiliary tree is identified with the root of the

excised tree

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

AS S

A A

A*

14/43

87 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Basic operations
Derived Tree and derivation tree

Adjunction (Adjoining) Constraints

Adjunction sometimes needs to be constrained even more than by ensuring
category identity

• Selective Adjunction (SA(T)): only members of T, a set of auxiliary trees,
may adjoin at this node

• Null Adjunction (NA): no adjunction is allowed at this node

• Obligatory Adjunction (OA(T)): a member of T must adjoin at this node

15/43

88 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Basic operations
Derived Tree and derivation tree

Overview

1 Introduction

2 Dependency Grammars

3 Tree Adjoing Grammar
Basic operations
Derived Tree and derivation tree

4 Lexical-functional Grammar

5 Head-Driven PS Grammar

89 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Basic operations
Derived Tree and derivation tree

Derived Trees and Derivation Trees

TAG distinguishes between derived trees and derivation trees.

• Dervied trees are akin to context-free/phrase structure trees

• Derivation trees are akin to dependency trees

TAG provides a way of having both kinds of representations

19/43

90 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Basic operations
Derived Tree and derivation tree

Example Lexicon

Recall the following lexical entries:

α1 α2 α3 β1

NP↓

likes

V
NP↓

VP

S

John

NP

Lyn

NP

really VP*

VP

20/43

91 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Basic operations
Derived Tree and derivation tree

Derived Tree

The derived tree is obtained by gluing all the tree pieces together until there’s a
normal-looking PS tree:

John

NP

likes

V

Lyn

NP

VP

S

But this tells us nothing about how the tree was derived.

21/43

92 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Basic operations
Derived Tree and derivation tree

Derivation Trees

The derivation tree records a history of the derviation and in the process captures
the dependency relations among words in the sentence

αJohn(1) αLyn(2.2) βreally(2)

αlike

22/43

93 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Basic operations
Derived Tree and derivation tree

How to come up with a derivation tree

Each node in the derivation tree records the address of the node in the parent
tree to which the adjunction/substitution was performed

• 0 is the root node address

• k is the address of the kth child of the root node

• p.q is the address of the qth child of the node at address p (sort of like the qth

child of the pth child)

23/43

94 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Basic operations
Derived Tree and derivation tree

Derivation tree address

Lyn gets the annotation 2.2 because VP is the second daughter of S, and NP is
the second daughter of VP

α1 α3

NP↓

likes

V
NP↓

VP

S

Lyn

NP

24/43

95 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Basic operations
Derived Tree and derivation tree

TAG: summary

MCS formalism
Lexicalized
Can be made parsable
Derived and derivation trees allow for a way to deal with
syntax and semantics
Can be equipped with semantics (synchronous tag)

96 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction
F-Structure
C-Structure
An example

Overview

1 Introduction

2 Dependency Grammars

3 Tree Adjoing Grammar

4 Lexical-functional Grammar
Introduction
F-Structure
C-Structure
An example

5 Head-Driven PS Grammar 97 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction
F-Structure
C-Structure
An example

Motivation for LFG

• Lexical = (not transformational) richly structured lexicon, where relations
between, e.g., verbal alternations, are stated

• Functional = (not configurational) abstract grammatical functions like subject
and object are primitives, i.e., not defined by the phrase structure
configurations

2/50

98 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction
F-Structure
C-Structure
An example

LFG in a nutshell

LFG (minimally) distinguishes two kinds of representation:

• c-structure (constituent structure):
overt linear and hierarchical organization of words into phrases

• f-structure (functional structure):
abstract functional organization of the sentence, explicitly representing
syntactic predicate-argument structure and functional relations

These are two completely different formalisms: trees (c-structure) and
attribute-value matrices (f-structure)

(We will largely ignore A-structure and σ-structure here.)

3/50

99 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction
F-Structure
C-Structure
An example

Overview

1 Introduction

2 Dependency Grammars

3 Tree Adjoing Grammar

4 Lexical-functional Grammar
Introduction
F-Structure
C-Structure
An example

5 Head-Driven PS Grammar 100 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction
F-Structure
C-Structure
An example

Part I: F-structure

F-structure maps more closely to meaning and encodes abstract grammatical
relations like subject and object as primitives, i.e. not reducible to anything else
(e.g., tree structure)

Motivation:

• Study of grammatical relations predates modern linguistic theory

• Categories like subject and object are cross-linguistic → languages vary less in
their f-structure

• e.g., Keenan-Comrie Hierarchy (for relative clause formation) is supposedly
universal

subj > do > io > obl > gen > ocomp

4/50

101 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction
F-Structure
C-Structure
An example

Grammatical functions

Inventory: subject, object, objθ, comp, xcomp, obliqueθ, adjunct, xadjunct

• Terms (core functions): subj, obj, objθ

• Semantically restricted: objθ, oblθ

– Thematic restrictions (θ) placed on function
– objθ: secondary obj functions associated with thematic roles: objtheme

only one used in English
– oblθ: thematically restricted oblique functions, often corresponding to

adpositions

• Open clausal functions (no internal subject): xcomp, xadj

– comp: sentential or closed (nonpredicative) infinitival complement
– xcomp: open (predicative) complement with subject externally controlled

5/50

102 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction
F-Structure
C-Structure
An example

Subcategorization

Subcategorization is done at f-structure

• Verbs select for grammatical functions

• Use the pred (predicate) feature to specify the semantic form, e.g.,

– yawn: pred ’yawn<subj>’
– hit: pred ’hit<subj,obj>’
– give: pred ’give<subj,obj,objtheme>’
– eat: pred ’eat<subj,(obj)>’

7/50

103 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction
F-Structure
C-Structure
An example

F-structure representation: Simple F-structures

F-structure is a function from attributes to values

• For the proper noun David, pred and num are attributes; ’David’ and sg are
the corresponding values

(1)
»

pred ’David’

num sg

–

• F-structures within f-structures: David yawned

(2)

2

6

6

6

6

4

pred ’yawn<subj>’

tense past

subj

"

pred ’David’

num sg

#

3

7

7

7

7

5

8/50

104 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction
F-Structure
C-Structure
An example

F-structure features

What sorts of features can be used?

• Ultimately, that’s up to the grammar writer

• Commonly used features in LFG include aspect, prontype, vform, etc.
(see (17) in Dalrymple (2006))

Important note:

• LFG does not define a set of features or values which must be included in an
f-structure

• So, one verb may define vform, while another might leave it undefined.

– This is different from HPSG, as we’ll see.

10/50

105 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction
F-Structure
C-Structure
An example

F-structures

• make use of a unification paradigm

• are associated with c-structure nodes,
described mostly by equations

106 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction
F-Structure
C-Structure
An example

Functional constraints example

Lexical constraints:

• John

– (g pred) = ’John’
– (g num) = sg

• runs

– (f pred) = ’run<subj>’
– (f subj case) = nom
– (f subj num) = sg

Phrasal constraints (more on this later):

• (f subj) = g

21/50

107 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction
F-Structure
C-Structure
An example

Functional constraints example (cont.)

Combining lexical and phrasal constraints, we have:

• (f subj) = g
• (g pred) = ’John’
• (g num) = sg
• (f pred) = ’run<subj>’
• (g case) = nom
• (g num) = sg

Minimal solution:

f :

2

6

6

6

4

pred ’run<subj>’

subj g :

2

6

4

pred ’John’

case nom

num sg

3

7

5

3

7

7

7

5

22/50

108 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction
F-Structure
C-Structure
An example

Overview

1 Introduction

2 Dependency Grammars

3 Tree Adjoing Grammar

4 Lexical-functional Grammar
Introduction
F-Structure
C-Structure
An example

5 Head-Driven PS Grammar 109 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction
F-Structure
C-Structure
An example

C-Structure

• Corresponds to a fairly traditional notion of phrase structure

X-Bar Theory (lexical heads with specifiers and complements)
Adjunction operation XP → XP YP
Categories: lexical (N, P, V, A, Adv) and functional (I, C)
no fixed inventory
Optionality: all constituent structure positions are optional
A grammar can also use

metacategories
ID/LP rules

110 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction
F-Structure
C-Structure
An example

Metacategories

A metacategory represents several different sets of categories

(18) a. XP ≡ {NP | PP | VP | AP | AdvP}
b. VP ≡ V NP

Note that using the metacategory VP given in (18b) in the rule S → NP VP
results in the following tree:

NP V NP

S

32/50

111 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction
F-Structure
C-Structure
An example

ID/LP Rules

Rules can be written in ID/LP format: ID = immediate dominance, LP = linear
precdence

(19) No LP rules:

a. VP → V, NP

b. VP → {V NP | NP V}

(20) One LP rule:

a. VP → V, NP V < NP

b. VP → V NP

(21) Interacting LP rules:

a. VP → V, NP, PP V < NP, V < PP

b. VP → {V NP PP | V PP NP}

33/50

112 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction
F-Structure
C-Structure
An example

Overview

1 Introduction

2 Dependency Grammars

3 Tree Adjoing Grammar

4 Lexical-functional Grammar
Introduction
F-Structure
C-Structure
An example

5 Head-Driven PS Grammar 113 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction
F-Structure
C-Structure
An example

An example grammar: The c-structure rules with annotations

(based on Kaplan and Bresnan 1995)

(27) a. S → NP
(↑subj) = ↓

VP
↑ = ↓

b. NP → Det
↑ = ↓

N
↑ = ↓

c. VP → V
↑ = ↓

NP
(↑obj) = ↓

NP
(↑obj2) = ↓

40/50

114 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction
F-Structure
C-Structure
An example

An example grammar II: The lexicon

(28) a. a Det (↑spec) = a
(↑num) = sg

b. girl N (↑num) = sg
(↑pred) = ’girl’

c. handed V (↑tense) = past
(↑pred) = ’hand<(↑subj), (↑obj), (↑obj2)>’

d. the Det (↑spec) = the

e. baby N (↑num) = sg
(↑pred) = ’baby’

f. toy N (↑num) = sg
(↑pred) = ’toy’

41/50

115 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction
F-Structure
C-Structure
An example

A sentence licensed by the example grammar

A

(↑spec)=a

(↑num)=sg

Det

girl

(↑n)=sg

(↑pred)=‘girl’

N

(↑subj)=↓
f2:NP

handed

(↑tense)=past

(↑pred)=‘hand<. . .>’

V

the

(↑det)=the

Det

baby

(↑num)=sg

(↑pred)=‘baby’

N

(↑obj)=↓
f4:NP

a

(↑spec)=a

(↑num)=sg

Det

toy

(↑num)=sg

(↑pred)=‘toy’

N

(↑obj2)=↓
f5:NP

↑ = ↓
f3:VP

f1:S

116 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction
F-Structure
C-Structure
An example

The resulting f-structure for the example sentence

f1, f3:

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

subj f2:

2

6

4

spec a

num sg

pred ’girl’

3

7

5

tense past

pred ‘hand <(↑subj), (↑obj), (↑obj2)>’

obj f4:

2

6

4

spec the

num sg

pred ‘baby’

3

7

5

obj2 f5 :

2

6

4

spec a

num sg

pred ‘toy’

3

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

43/50

117 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction
F-Structure
C-Structure
An example

Summary

• LFG is split into f-structure and c-structure, with a mapping between them

• F-structure is a rich feature-based way of encoding functional relations

• C-structure is a basic constituent structure

50/50

118 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

Overview

1 Introduction

2 Dependency Grammars

3 Tree Adjoing Grammar

4 Lexical-functional Grammar

5 Head-Driven PS Grammar
Introduction

119 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

The building blocks of HPSG grammars

In HPSG, sentences, words, phrases, and multisentence discourses are all
represented as signs

• = complexes of phonological, syntactic/semantic, and discourse
information.

We can (and will) view HPSG grammars in two different ways:

1. From a linguistic perspective

2. From a formal perspective

Historical note: HPSG is based on Generalized Phrase Structure Grammar
(GPSG) (Gazdar et al. 1985)

2

120 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

HPSG grammars from a linguistic perspective

From a linguistic perspective, an HPSG grammar consists of

a) a lexicon
licensing basic words (which are themselves complex objects)

b) lexical rules
licensing derived words

c) immediate dominance (id) schemata
licensing constituent structure

d) linear precedence (lp) statements
constraining word order

e) a set of grammatical principles
expressing generalizations about linguistic objects

3

121 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

HPSG (typed) feature structures

HPSG is nonderivational, but in some sense, HPSG has several different
levels (layers of features)

• A feature structure is a directed acyclic graph (DAG), with arcs
representing features going between values

Each of these feature values is itself a complex object:

• The type sign has the features phon and synsem appropriate for it

• The feature synsem has a value of type synsem

• This type itself has relevant features (local and non-local)

4

122 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

Skeleton of a typed feature structure

In attribute-value matrix (AVM) form, here is the skeleton of an object:

2

6

6

6

6

6

6

6

6

6

6

4

sign

phon list
“

phon
”

synsem

2

6

4

synsem

local local

non-localnon-local

3

7

5

dtrs list
“

sign
”

3

7

7

7

7

7

7

7

7

7

7

5

5

123 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

Abbreviated skeleton

Things are often abbreviated when written down (although, the object itself
still contains the same things):

2

6

6

6

6

6

4

phon list
“

phon
”

synsem

"

loc loc

non-locnon-loc

#

dtrs list
“

sign
”

3

7

7

7

7

7

5

6

124 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

An example tree

Let’s walk through an example to illustrate how feature structures can be
used, starting with this rather impoverished tree:

she

drinks wine

7

125 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

Example tree with feature structures

»

phon <she>

synsem 1

–

2

6

6

6

6

6

4

phon <drinks>

synsem|loc|cat

2

6

6

4

head 3

"

verb

vform fin

#

subcat
D

1,2
E

3

7

7

5

3

7

7

7

7

7

5

»

phon <wine>

synsem 2

–

h c

2

4synsem|loc|cat
"

head 3

subcat
D

1

E

#

3

5

c h

"

synsem|loc|cat
"

head 3

subcat 〈〉

##

8

126 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

Some things to note about the tree

• Phonology (phon) is kept separate from syntax and semantics (synsem),
allowing different processes to operate on them

• We say that drinks is a finite verb by specifying its type (verb) and that
the value of its vform feature is fin

• We have some way to say that parts of the tree share identical
information, e.g., that a VP and its head daughter V have many of
the same properties (3)

• We uses lists to encode subcategorization information, and these items
are identified with elements in the tree—note, too, how selection is kept
local

9

127 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

Phrase structure grammar?

Even though it is called Head-driven Phrase Structure Grammar, the name
is a misnomer

• Nothing about the formalism forces you to use PS trees

• In fact, technically, there are no trees as such, only features which encode
objects akin to trees

– Types license particular schemata (e.g., head-comps-struc), and a
dtrs list keeps track of the constituent daughters

– For ease of representation, we often display things in trees
– But the example two slides back is more accurately represented as on

the next slide

10

128 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

phrase

s|l|c
"

head 3

subcat 〈〉

#

dtrs

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

head-comps-struc

comp-dtrs

*"

phon <she>

synsem 1

#+

head-dtr

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

phrase

s|l|c
"

head 3

subcat
D

1

E

#

dtrs

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

head-comps-struc

head-dtr

2

6

6

6

6

6

6

6

4

word

phon <drinks>

s|l|c

2

6

6

4

head 3

"

verb

vform fin

#

subcat
D

1,2
E

3

7

7

5

3

7

7

7

7

7

7

7

5

comp-dtrs

*"

phon <wine>

synsem 2

#+

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

511

129 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

Lexicalized grammar

How do we start deriving such complex representations?

• One tenet of HPSG (akin to LFG) is that the lexicon contains complex
representations of words

• So, when words are built into phrases, we have all this information at
our hands

We can see this on the lexical entry on the next page, taken from Levine
and Meurers (2005):

• For example, we can see that each word relates its syntactic argument
structure (valence) with its semantics (content)

12

130 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

Lexical entry for put

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

word

phon <put>

synsem|local

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

category

2

6

6

6

6

6

6

4

head

"

verb

aux -

#

valence

2

4

subj
D

NP1

E

comps
D

NP2 , PP3

E

3

5

3

7

7

7

7

7

7

5

content

2

6

6

6

4

put-relation

putter 1

thing-put 2

destination 3

3

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

13

131 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

Capturing dependencies

A grammatical framework needs to be able to capture the different
grammatical dependencies of natural languages (cf. Levine and Meurers
2005, p. 5)

• Local dependencies: limited syntactic domain and largely lexical in nature

• Non-local dependencies: arbitrarily large syntactic domain and
independent of lexicon

HPSG seems well-suited for this

14

132 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

Local dependencies

As with the other frameworks we’ve looked at, HPSG deals with local
dependencies via the selectional properties of lexical heads (head-driven)

For example:

• Raising verbs select for an argument with which they share a subject

• Control (or equi) verbs select for an argument which has a co-indexed
subject

15

133 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

Raising verb example

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

word

phon <seem>

synsem|local

2

6

6

6

6

6

6

6

6

6

6

6

6

4

cat|val

2

6

6

6

6

6

6

6

4

subj 1

comps

*

2

6

6

6

6

4

loc

2

6

6

6

6

4

cat

2

6

4

head verb

val

"

subj 1

comps 〈〉

#

3

7

5

cont 2

3

7

7

7

7

5

3

7

7

7

7

5

+

3

7

7

7

7

7

7

7

5

content

"

seem’

arg 2

#

3

7

7

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

16

134 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

Control/Equi verb example

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

word

phon <try>

synsem|local

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

cat|val

2

6

6

6

6

6

6

6

6

4

subj
D

NP1

E

comps

*

2

6

6

6

6

6

4

loc

2

6

6

6

6

4

cat

2

6

6

4

head verb

val

"

subj
D

NP1

E

comps 〈〉

#

3

7

7

5

cont 2

3

7

7

7

7

5

3

7

7

7

7

7

5

+

3

7

7

7

7

7

7

7

7

5

content

2

6

4

try’

tryer 1

tried 2

3

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

17

135 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

Non-local dependencies

Instead of using transformations, HPSG analyzes unbounded dependency
constructions (UDCs) by linking a filler with a gap

• Analysis relies on the feature slash

• The general idea is:

– Trace lexical entry puts its local contents into a non-local slash set
– This information is shared among the nodes in a tree
– When the filler is realized, the information is removed from the slash

set

18

136 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

HPSG grammars from a formal perspective

As with other frameworks we’ve examined, HPSG sets out to model the
domain:

• Models of empirically observable objects need to be established, and

• Theories need to constrain which models actually exist.

Thus, from a formal perspective, an HPSG grammar consists of

• the signature as declaration of the domain, and

• the theory constraining the domain.

19

137 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

The signature

• defines the ontology (‘declaration of what exists’):

– which kind of objects are distinguished, and
– which properties of which objects are modeled.

• consists of

– the type (or sort) hierarchy and
– the appropriateness conditions, defining which type has which

appropriate attributes (or features) with which appropriate values.

∗ Some atomic types have no feature appropriate for them

20

138 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

Example excerpt of a signature

Here, we leave out the appropriateness conditions and just show a hierarchy
of types

+ −

boolean

noun verb ...

subst(antive)

marker determiner

func(tional)

head

object

21

139 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

Sort-resolved

Based on the example signature, the following two descriptions are
equivalent:

(1) a. func

b. marker ∨ determiner

That is, a type (or sort) is really a disjunction of its maximally specific
subtypes

22

140 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

Models of linguistic objects

• As mentioned, the objects are modelled by feature structures, which are
depicted as directed graphs.

• Since these models represent objects in the world (and not knowledge
about the world), they are total with respect to the ontology declared in
the signature. Technically, one says that these feature structures are

– totally well-typed : Every node has all the attributes appropriate for its
type and each attribute has an appropriate value.
∗ Note that this is different from LFG.

– sort-resolved : Every node is of a maximally specific type.

23

141 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

Structure sharing

The main explanatory mechanism in HPSG is that of structure-sharing,
equating two features as having the exact same value (token-identical)

2

6

6

6

6

6

6

6

4

word

phon <walks>

synsem|loc

2

6

6

4

cat|subcat
D

NP[nom]
1 [3rd,sing]

E

content

"

walk’

walker 1

#

3

7

7

5

3

7

7

7

7

7

7

7

5

The index of the np on the subcat list is said to unify with the value of
laugher

24

142 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

Descriptions

A description language and its abbreviating attribute-value matrix
(AVM) notation is used to talk about sets of objects. Descriptions
consists of three building blocks:

• Type decriptions single out all objects of a particular type, e.g., word

• Attribute-value pairs describe objects that have a particular property.
The attribute must be appropriate for the particular type of object, and
the value can be any kind of description, e.g.,

h

spouse
h

name mary
ii

• Tags (structure sharing) to specify token identity, e.g. 1

25

143 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

Descriptions (cont.)

Complex descriptions are obtained by combining descriptions with the help
of conjunction (∧), disjunction (∨) and negation (¬). In the AVM notation,
conjunction is implicit.

A theory (in the formal sense) is a set of description language statements,
often referred to as the constraints.

• The theory singles out a subset of the objects declared in the signature,
namely those which are grammatical.

• A linguistic object is admissible with respect to a theory iff it satisfies each
of the descriptions in the theory and so does each of its substructures.

26

144 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

Description example

A verb, for example, can specify that its subject be masculine singular (as
Russian past tense verbs do):

(2) a. Ya
Imasc.sg

spal.
sleptmasc.sg

b. On
Hemasc.sg

spal.
sleptmasc.sg

(3) On the verb’s subj list:

2

6

6

6

6

4

word

synsem|loc

2

6

6

4

cat|head noun

content

"

index

"

num sing

gen masc

##

3

7

7

5

3

7

7

7

7

5

This doesn’t specify the entire (totally well-typed) feature structure, just
what needs to be true in the feature structure.

27

145 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

Subsumption

Feature structure descriptions have subsumption relations between them.

• A more general description subsumes a more specific one.

• A more general description usually means that less features are specified.

28

146 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

Subsumption example

The description in (3) is said to subsume both of the following more specific
(partial) feature structures:

(4) a.

2

6

6

6

6

6

6

4

word

synsem|loc

2

6

6

6

6

4

cat|head noun

content

2

6

4
index

2

6

4

per 1st

num sing

gen masc

3

7

5

3

7

5

3

7

7

7

7

5

3

7

7

7

7

7

7

5

b.

2

6

6

6

6

6

6

4

word

synsem|loc

2

6

6

6

6

4

cat|head noun

content

2

6

4
index

2

6

4

per 3rd

num sing

gen masc

3

7

5

3

7

5

3

7

7

7

7

5

3

7

7

7

7

7

7

5

29

147 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

HPSG from a linguistic perspective (again)

Now that we have these feature structures, how do we use them for linguistic
purposes?

1. Specify a signature/ontology which allows us to make linguistically-
relevant distinctions and puts appropriate features in the appropriate
places

2. Specify a theory which constrains that signature for a particular language

• Lexicon specifies each word and the different properties that it has
– There can also be relations (so-called lexical rules) between words

in the lexicon
• Phrasal rules, or principles, allow words to combine into phrases

30

148 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

A tour of Pollard and Sag (1994)

We’ll start with the signature and theory from Pollard and Sag (1994).

In the next series of slides, you should:

• begin to understand what everything means

• begin to understand the connection between linguistic theory and its
formalization in HPSG

• begin to gain an appreciation for a completely worked-out theory

31

149 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

An ontology of linguistic objects

word
»

phrase

dtrs constituent-structure

–

2

6

4

sign

phon list(phonstring)

synsem synsem

3

7

5

2

6

4

synsem

local local

non-local non-local

3

7

5

2

6

6

6

4

local

category category

content content

context context

3

7

7

7

5

2

6

6

6

4

category

head head

subcat list(synsem)

. . .

3

7

7

7

5

32

150 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

Why the complicated structure?

• local & nonlocal: Most linguistic constructions can be handled
locally, but non-local constructions (e.g., extraction) require different
mechanisms

• category, content, and context: roughly, these correspond to
syntactic, semantic, and pragmatic notions, all of which are locally
determined

• head and subcat: a words syntactic information comes in two parts:
its own lexical information (part of speech, etc.) and information about
its arguments

33

151 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

Part-of-speech (head information)

marker determiner

»

functional

. . .

–

adjective
2

6

6

6

4

verb

vform vform

aux boolean

inv boolean

3

7

7

7

5

»

noun

case case

– »

preposition

pform pform

–

. . .

2

6

4

substantive

prd boolean

. . .

3

7

5

head

34

152 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

Properties of particular part-of-speech

finite infinitive base gerund present-part. past-part. passive-part.

vform

nominative accusative

case

of to . . .

pform

35

153 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

What subcat does

The subcat list can be thought of as akin to a word’s valency requirements

• Items on the subcat list are ordered by obliqueness—akin to LFG—not
necessarily by linear order

• The subcat Principle, described below, will describe a way for a word
to combine with its arguments

– That is, we will still need a way to go from the subcat specification
to some sort of tree structure

NB: Here, we will use a single subcat list, but later we will switch to a
valence feature, which contains both a subj and comps list

36

154 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

Locality of subcat

subcat selects a list of synsem values, not sign values.

• If you work through the ontology, this means that a word does not have
access to the dtrs list of items on its own subcat list

• Intuitively, this means that a word cannot dictate properties of the
daughters of its daughters.

⇒ Constructions are thus restricted to local relations

37

155 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

content information

The content feature specifies different semantic information

• A feature appropriate for nominal-object objects (a subtype of content
objects) is index (as shown on the next slide)

• Agreement features can be stated through the index feature

• Note that case was put somewhere else (within head), so case
agreement is treated differently than person, number, and gender
agreement (at least in English)

38

156 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

Semantic representations

. . .

»

laugh’

laugher ref

–
2

6

6

6

4

give’

giver ref

given ref

gift ref

3

7

7

7

5

2

6

4

drink’

drinker ref

drunken ref

3

7

5

2

6

4

think’

thinker ref

thought psoa

3

7

5

psoa

2

6

4

nom-obj

index index

restriction set(psoa)

3

7

5

content

39

157 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

Indices

referential there it

2

6

6

6

4

index

person person

number number

gender gender

3

7

7

7

5

first second third

person

singular plural

number

masculine feminine neuter

gender

40

158 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

Auxiliary data structures

Before we move on to some linguistic examples, a few other objects need
to be defined

true false

boolean

empty-list
2

6

4

non-empty-list

head ⊤
tail list

3

7

5

list
. . .

⊤

41

159 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

Abbreviations for describing lists

empty-list is abbreviated as e-list, <>

non-empty-list is abbreviated as ne-list

»

head 1

tail 2

–

is abbreviated as
D

1 | 2

E

D

. . . 1 | 〈〉
E

is abbreviated as
D

. . . 1
E

2

6

4

head 1

tail

»

head 2

tail 3

–

3

7

5
is abbreviated as

D

1 , 2 | 3

E

Attention:
D

⊤
E

and
D

1

E

describe all lists of length one!

42

160 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

Abbreviations of common AVMs

Pollard and Sag (1994) use some abbreviations to describe synsem objects:

Abbreviation Abbreviated AVM

NP1

2

6

6

6

4

synsem

local

2

6

4

category

»

head noun

subcat 〈〉

–

content|index 1

3

7

5

3

7

7

7

5

S:1

2

6

6

6

4

synsem

local

2

6

4

category

»

head verb

subcat 〈〉

–

content 1

3

7

5

3

7

7

7

5

VP:1

2

6

6

6

6

4

synsem

local

2

6

6

4

category

"

head verb

subcat
D

synsem
E

#

content 1

3

7

7

5

3

7

7

7

7

5

43

161 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

The Lexicon

The basic lexicon is defined by the Word Principle as part of the theory. It
defines which of the ontologically possible words are grammatical:

word → lexical-entry1 ∨ lexical-entry2 ∨ . . .

with each of the lexical entries being descriptions, such as e.g.:

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

word

phon <laughs>

synsem|loc

2

6

6

6

6

6

6

6

6

4

cat

2

6

6

4

head

"

verb

vform fin

#

subcat
D

NP[nom]
1 [3rd,sing]

E

3

7

7

5

content

"

laugh’

laugher 1

#

3

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

44

162 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

An example lexicon

word →

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

phon <gives>

s|l

2

6

6

6

6

6

6

6

6

6

6

6

6

4

cat

2

6

6

4

head

"

verb

vform fin

#

subcat
D

NP[nom]
1 [sing], NP[acc]2 , PP[to]3

E

3

7

7

5

cont

2

6

6

6

4

give’

giver 1

gift 2

given 3

3

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

45

163 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

∨

2

6

6

6

6

6

6

6

6

6

6

6

6

4

phon <drinks>

s|l

2

6

6

6

6

6

6

6

6

6

6

4

cat

2

6

6

4

head

"

verb

vform fin

#

subcat
D

NP[nom]
1 [3rd,sing], NP[acc]2

E

3

7

7

5

cont

2

6

4

drink’

drinker 1

drunken 2

3

7

5

3

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

5

∨

2

6

6

6

6

6

6

6

6

6

6

6

6

4

phon <drink>

s|l

2

6

6

6

6

6

6

6

6

6

6

4

cat

2

6

6

4

head

"

verb

vform fin

#

subcat
D

NP[nom]
1 [plur], NP[acc]2

E

3

7

7

5

cont

2

6

4

drink’

drinker 1

drunken 2

3

7

5

3

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

5

46

164 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

∨

2

6

6

6

6

6

6

6

6

6

4

phon <she>

synsem|loc

2

6

6

6

6

6

6

6

4

cat

2

6

4

head

"

noun

case nom

#

subcat 〈〉

3

7

5

cont

"

index

"

per third

num sing

##

3

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

5

∨

2

6

6

6

6

6

6

6

4

phon <wine>

synsem|loc

2

6

6

6

6

4

cat

"

head noun

subcat 〈〉

#

cont

"

index

"

per third

num sing

##

3

7

7

7

7

5

3

7

7

7

7

7

7

7

5

47

165 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

∨

2

6

6

6

6

6

6

6

6

4

phon <to>

s|l

2

6

6

6

6

6

6

4

cat

2

6

6

4

head

"

preposition

pform to

#

subcat
D

NP[acc]1

E

3

7

7

5

cont
h

index 1

i

3

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

5

∨

2

6

6

6

6

6

6

6

6

6

6

6

6

4

phon <think>

s|l

2

6

6

6

6

6

6

6

6

6

6

4

cat

2

6

6

4

head

"

verb

vform fin

#

subcat
D

NP[nom]
1 [plur], S[fin]:2

E

3

7

7

5

cont

2

6

4

think’

thinker 1

thought 2

3

7

5

3

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

5

48

166 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

A very first sketch of an example

Here’s that impoverished tree again:

she

drinks wine

We’re going to see how the theory licenses this structure ...

49

167 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

Types of phrases

In order to put words from our lexicon into a sentence, we have to define
what makes an acceptable sentence structure

• Each phrase has a dtrs attribute (words do not have this attribute),
which has a constituent-structure value

• This dtrs value loosely corresponds to what we normally view in a tree
as daughters

– Additionally, “tree branches” contain grammatical role information
(adjunct, complement, etc.)

• By distinguishing different kinds of constituent-structures, we define what
kinds of phrases exist in a language

50

168 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

An ontology of phrases

head-comps-struc

2

6

6

6

4

head-marker-struc

head-dtr phrase

marker-dtr word

comp-dtrs elist

3

7

7

7

5

2

6

6

6

4

head-adjunct-struc

head-dtr phrase

adjunct-dtr phrase

comp-dtrs elist

3

7

7

7

5

2

6

4

head-struc

head-dtr sign

comp-dtrs list(phrase)

3

7

5

»

coordinate-structure

. . .

–

constituent-structure

51

169 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

Sketch of an example for head-complement structures

»

phon <she>

synsem 1

–

2

6

6

6

6

6

4

phon <drinks>

synsem|loc|cat

2

6

6

4

head 3

"

verb

vform fin

#

subcat
D

1,2
E

3

7

7

5

3

7

7

7

7

7

5

»

phon <wine>

synsem 2

–

2

4synsem|loc|cat
"

head 3

subcat
D

1

E

#

3

5

"

synsem|loc|cat
"

head 3

subcat 〈〉

##

52

170 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

Universal Principles

But how exactly did that last example work?

• drinks has head information specifying that it is a verb and so forth,
and it also has subcategorization information specifying that it needs a
subjects and an object.

– The head information gets percolated up (The head Principle)
– The subcategorization information gets “checked off” as you move up

in the tree (The subcat Principle)

Such principles are treated as linguistic universals in HPSG.

53

171 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

Head-Feature Principle:

• In prose: The head feature of any headed phrase is structure-shared
with the head value of the head daughter.

• Specified as a constraint:

»

phrase

dtrs headed-structure

–

→
»

synsem|loc|cat|head 1

dtrs|head-dtr|synsem|loc|cat|head 1

–

54

172 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

Subcat Principle:

In a headed phrase, the subcat value of the head daughter is the
concatenation of the phrase’s subcat list with the list (in order of increasing
obliqueness of synsem values of the complement daughters).

h

dtrs headed-structure
i

→

2

6

6

4

synsem|loc|cat|subcat 1

dtrs

"

head-dtr|synsem|loc|cat|subcat 1 ⊕ 2

comp-dtrs synsem2sign
“

2

”

#

3

7

7

5

with ⊕ standing for list concatenation, i.e., append, defined as follows

e-list ⊕ 1 := 1.
»

first 1

rest 2

–

⊕ 3 :=
»

first 1

rest 2 ⊕ 3

–

.

55

173 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

Fallout from these Principles

• Note that agreement is handled neatly, simply by the fact that the
synsem values of a word’s daughters are token-identical to the word’s
subcat items.

One question remains before we can get the structure we have above:

• How exactly do we decide on a syntactic structure?

• i.e., Why is it that the object was checked off low and the subject was
checked off at a higher point?

Answer: because of the ID schemata used

56

174 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

Immediate Dominance (ID) Schemata

• There is an inventory of valid ID schemata in a language

• Every headed phrase must satisfy exactly one of the ID schemata

– Which ID schema is used depends on the type of the dtrs attribute
– this goes back to the ontology of phrases we saw earlier

Formally, though, these constraints are phrased as the universal principles
were

57

175 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

Immediate Dominance Principle (for English):

»

phrase

dtrs headed-struc

–

→

2

6

6

6

6

6

6

6

6

4

synsem|loc|cat

2

6

4

head

 

»

verb

inv −

–

∨ ¬ verb

!

subcat 〈〉

3

7

5

dtrs

2

6

4

head-comps-struc

head-dtr phrase

comp-dtrs
˙

sign
¸

3

7

5

3

7

7

7

7

7

7

7

7

5

(Head-Subject)

∨

2

6

6

6

6

6

6

4

synsem|loc|cat

2

6

4

head

 

»

verb

inv −

–

∨ ¬ verb

!

subcat
˙

synsem
¸

3

7

5

dtrs

»

head-comps-struc

head-dtr word

–

3

7

7

7

7

7

7

5

(Head-Complement)

∨

2

6

6

6

6

6

4

synsem|loc|cat

2

6

4

head

»

verb

inv +

–

subcat 〈〉

3

7

5

dtrs

»

head-comps-struc

head-dtr word

–

3

7

7

7

7

7

5

(Head-Subject-Complement)

∨ . . . continued on next page
58

176 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

Immediate Dominance Principle (for English):

»

phrase

dtrs headed-struc

–

→ ...
...
...

∨
"

dtrs

»

head-marker-struc

marker-dtr|synsem|loc|cat|head marker

–

#

(Head-Marker)

∨
2

6

4
dtrs

2

4

head-adjunct-struc

adj-dtr|synsem|loc|cat|head|mod 1

head-dtr|synsem 1

3

5

3

7

5
(Head-Adjunct)

So, in the example of She drinks wine, the dtrs value over drinks wine is a
head-comps-struc, while the dtrs over the whole sentence is a head-subj-
struc

59

177 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

Towards Head Adjunct Structures
Lexical entry of an attributive adjective2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

word

phon <red>

synsem

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

synsem

local

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

local

category

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

cat

head

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

adj

prd −

mod

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

synsem

local

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

local

category

2

6

6

6

6

6

6

6

6

6

4

cat

head noun

subcat

*

2

6

6

6

6

4

synsem

local

2

6

4

local

category

"

cat

head det

#

3

7

5

3

7

7

7

7

5

+

3

7

7

7

7

7

7

7

7

7

5

content

2

6

4

nom-obj

index 1 index

restr 2 list

3

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

content

2

6

6

6

6

4

nom-obj

index 1

restr

*"

red-rel

arg1 1

#

| 2

+

3

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

60

178 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

Lexical entry of an attributive adjective
Version without redundant specifications

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

word

phon <red>

synsem|loc

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

cat|head

2

6

6

6

6

6

6

6

6

6

6

4

adj

prd −

mod|loc

2

6

6

6

6

6

4

cat

2

4

head noun

subcat
Dh

loc|cat|head det
iE

3

5

content

"

index 1 index

restr 2 list

#

3

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

5

cont

2

6

6

4

index 1

restr

*"

red-rel

arg1 1

#

| 2

+

3

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

61

179 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

Sketch of an example for a head-adjunct structure

2

6

6

6

4

phon <red>

s|loc|cat|head

2

6

4

adj

prd −
mod 3

3

7

5

3

7

7

7

5

2

6

6

6

4

phon <book>

s 3

2

4loc|cat

2

4

head 2noun

subcat
D

1

h

loc|cat|head det
iE

3

5

3

5

3

7

7

7

5

a h

2

6

6

4

phon <red, book>

s|loc|cat
"

head 2

subcat
D

1

E

#

3

7

7

5

62

180 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

Sketch of an example with an auxiliary

»

phon <John>

synsem 1

–

2

6

6

6

6

6

6

6

6

6

4

phon <can>

synsem|loc|cat

2

6

6

6

6

6

6

6

4

head 3

2

6

6

6

4

verb

vform fin

aux +

inv −

3

7

7

7

5

subcat
D

1NP
h

nom
i

,2VP
h

bse
iE

3

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

5

»

phon <go>

synsem 2

–

h c

2

6

6

4

phon <can, go>

synsem|loc|cat
"

head 3

subcat
D

1

E

#

3

7

7

5

c h

2

6

4

phon <John, can, go>

synsem|loc|cat
"

head 3

subcat 〈〉

#

3

7

5

63

181 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

Sketch of an example with an inverted auxiliary

2

6

6

6

6

6

6

6

6

6

4

phon <can>

synsem|loc|cat

2

6

6

6

6

6

6

6

4

head 3

2

6

6

6

4

verb

vform fin

aux +

inv +

3

7

7

7

5

subcat
D

1NP
h

nom
i

,2VP
h

bse
iE

3

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

5

»

phon <John>

synsem 1

– »

phon <go>

synsem 2

–

h c c

2

6

4

phon <can, John, go>

synsem|loc|cat
"

head 3

subcat 〈〉

#

3

7

5

64

182 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

SPEC Principle:

2

4

phrase

dtrs
h“

marker-dtr ∨ comp-dtrs|first
”

|synsem|loc|cat|head functional
i

3

5

→
2

4dtrs

"
“

marker-dtr ∨ comp-dtrs|first
”

|synsem|loc|cat|head|spec 1

head-dtr|synsem 1

#

3

5

65

183 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

Marking Principle:

»

phrase

dtrs headed-structure

–

→
2

6

4

synsem|loc|cat|marking 1

dtrs

»

head-mark-struc

marker-dtr|synsem|loc|cat|marking 1

–

3

7

5

∨
2

6

4

synsem|loc|cat|marking 1

dtrs

»¬head-mark-struc

head-dtr|synsem|loc|cat|marking 1

–

3

7

5

66

184 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

Lexical entry of the marker that

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

phon <that>

synsem|loc|cat

2

6

6

6

6

6

6

6

6

6

6

6

6

4

head

2

6

6

6

6

6

6

6

4

mark

spec

2

6

6

6

6

4

loc|cat

2

6

6

6

6

4

head

"

verb

vform fin ∨ bse

#

marking unmarked

subcat 〈〉

3

7

7

7

7

5

3

7

7

7

7

5

3

7

7

7

7

7

7

7

5

subcat 〈〉
marking that

3

7

7

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

67

185 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

Sketch of an example for a head-marker structure

2

6

6

6

6

6

6

4

phon <that>

synsem|loc|cat

2

6

6

6

6

4

head

"

mark

spec 3

#

subcat 〈〉
marking 1that

3

7

7

7

7

5

3

7

7

7

7

7

7

5

2

6

6

6

6

6

6

6

4

phon <John laughs>

s 3

2

6

6

6

6

4

loc|cat

2

6

6

6

6

4

head 2

"

verb

vform fin

#

marking unmarked

subcat 〈〉

3

7

7

7

7

5

3

7

7

7

7

5

3

7

7

7

7

7

7

7

5

m h

2

6

6

6

4

phon <that,John,laughs>

s|loc|cat

2

6

4

head 2

subcat 〈〉
marking 1

3

7

5

3

7

7

7

5

68

186 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

Introduction

A few more points on HPSG

• We can view a grammar as a set of constraints: formulas which have
to be true in order for a feature structure to be well-formed

With such a view, parsing with HPSG falls into the realm of constraint-
based processing

• Two important points about relating descriptions are subsumption and
unification, loosely defined as:

– subsumption: the description F subsumes the description G iff G
entails F; i.e., F is more general than G

– unification: the description of F and G unify iff their values are
compatible

• Closed World Assumption: there are no linguistic species beyond what
is specified in the type hierarchy

69

187 / 188



Introduction
Dependency Grammars
Tree Adjoing Grammar

Lexical-functional Grammar
Head-Driven PS Grammar

References

References I

Dickinson, M., Brew, C., & Meurers, D. 2012. Language and Computers. Wiley.

188 / 188


	Introduction
	Syntactic analysis

	Dependency Grammars
	Tree Adjoing Grammar
	Lexical-functional Grammar
	Head-Driven PS Grammar
	References

