Formal Languages Formal Grammars Regular Languages Formal complexity of Natural Languages References

Formal Languages and Linguistics

Pascal Amsili

Sorbonne Nouvelle, Lattice (CNRS/ENS-PSL)

Cogmaster, september 2020

Overview

- Formal Languages
- Pormal Grammars
 - Definition
 - Language classes
- Regular Languages
- 4 Formal complexity of Natural Languages

Principle

Define language families on the basis of properties of the grammars that generate them :

- Four classes are defined, they are included one in another
- ② A language is of type k if it can be recognized by a type k grammar (and thus, by definition, by a type k-1 grammar); and cannot be recognized by a grammar of type k+1.

Chomsky's hierarchy

- type 0 No restriction on $P \subset (X \cup V)^* V(X \cup V)^* \times (X \cup V)^*$.
- type 1 (context-sensitive grammars) All rules of P are of the shape (u_1Su_2, u_1mu_2) , where u_1 and $u_2 \in (X \cup V)^*$, $S \in V$ and $m \in (X \cup V)^+$.
- type 2 (context-free grammar) All rules of P are of the shape (S, m), where $S \in V$ and $m \in (X \cup V)^*$.
- type 3 (regular grammars) All rules of P are of the shape (S, m), where $S \in V$ and $m \in X.V \cup X \cup \{\varepsilon\}$.

Examples

type 3:

$$S \rightarrow aS \mid aB \mid bB \mid cA$$

 $B \rightarrow bB \mid b$
 $A \rightarrow cS \mid bB$

Examples

type 3:

$$S \rightarrow aS \mid aB \mid bB \mid cA$$

 $B \rightarrow bB \mid b$
 $A \rightarrow cS \mid bB$

type 2:
$$E \rightarrow E + T \mid T, T \rightarrow T \times F \mid F, F \rightarrow (E) \mid a$$

Example 1 type 0

```
Type 0: S \rightarrow SABC \quad AC \rightarrow CA \quad A \rightarrow a \\ S \rightarrow \varepsilon \quad CA \rightarrow AC \quad B \rightarrow b \\ AB \rightarrow BA \quad BC \rightarrow CB \quad C \rightarrow c \\ BA \rightarrow AB \quad CB \rightarrow BC \\ \text{generated language}:
```

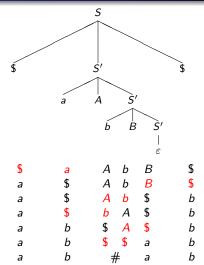
Example 1 type 0

```
Type 0: S \rightarrow SABC \quad AC \rightarrow CA \quad A \rightarrow a S \rightarrow \varepsilon \qquad CA \rightarrow AC \quad B \rightarrow b AB \rightarrow BA \qquad BC \rightarrow CB \quad C \rightarrow c BA \rightarrow AB \qquad CB \rightarrow BC generated language: words with an equal number of a, b, and c.
```

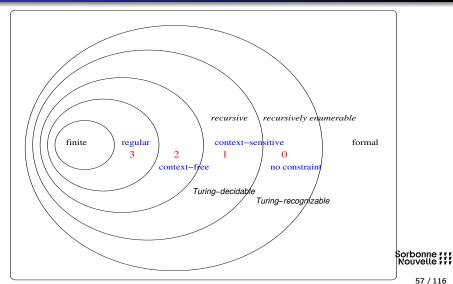
Example 2: type 0

Type 0:
$$S \rightarrow \$S'\$$$
 $Aa \rightarrow aA$ $\$a \rightarrow a\$$ $S' \rightarrow aAS'$ $Ab \rightarrow bA$ $\$b \rightarrow b\$$ $S' \rightarrow bBS'$ $Ba \rightarrow aB$ $A\$ \rightarrow \a $S' \rightarrow \varepsilon$ $Bb \rightarrow bB$ $B\$ \rightarrow \b $\$\$ \rightarrow \#$

Example 2: type 0 (cont'd)



Language families



Remarks

- There are others ways to classify languages,
 - either on other properties of the grammars;
 - or on other properties of the languages
- Nested structures are preferred, but it's not necessary
- When classes are nested, it is expected to have a growth of complexity/expressive power

Overview

- Formal Languages
- Pormal Grammars
- Regular Languages
 - Definition
 - Automata
 - Properties
- 4 Formal complexity of Natural Languages

Definition

3 possible definitions

- a regular language can be generated by a regular grammar
- 2 a regular language can be defined by rational expressions
- a regular language can be recognized by a finite automaton

Def. 15 (Rational Language)

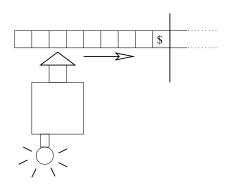
A rational language on Σ is a subset of Σ^* inductively defined thus:

- \emptyset and $\{\varepsilon\}$ are rational languages ;
- for all $a \in X$, the singleton $\{a\}$ is a rational language;
- for all g and h rational, the sets $g \cup h$, g.h and g^* are rational languages.

Overview

- Formal Languages
- 2 Formal Grammars
- Regular Languages
 - Definition
 - Automata
 - Properties
- 4 Formal complexity of Natural Languages

Metaphoric definition



Formal definition

Def. 16 (Finite deterministic automaton (FDA))

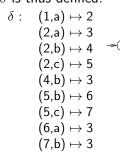
A finite state deterministic automaton ${\cal A}$ is defined by :

$$\mathcal{A} = \langle Q, \Sigma, q_0, F, \delta \rangle$$

- Q is a finite set of states
- Σ is an alphabet
- q_0 is a distinguished state, the initial state,
- F is a subset of Q, whose members are called final/terminal states
- δ is a mapping **fonction** from $Q \times Σ$ to Q. Notation δ(q, a) = r.

Example

Let us consider the (finite) language $\{aa, ab, abb, acba, accb\}$. The following automaton recognizes this language: $\langle Q, \Sigma, q_0, F, \delta \rangle$, avec $Q = \{1, 2, 3, 4, 5, 6, 7\}$, $\Sigma = \{a, b, c\}$, $q_0 = 1$, $F = \{3, 4\}$, and δ is thus defined:



	а	b	С
$\rightarrow 1$	2		
2	3	4	5
← 3			
← 4		3	
5		6	7
6	3		
7		3	

Recognition

Recognition is defined as the existence of a sequence of states defined in the following way. Such a sequence is called a path in the automaton.

Def. 17 (Recognition)

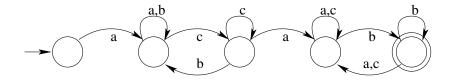
A word $a_1a_2...a_n$ is **recognized/accepted** by an automaton iff there exists a sequence $k_0, k_1, ..., k_n$ of states such that:

$$k_0 = q_0$$

$$k_n \in F$$

$$\forall i \in [1, n], \ \delta(k_{i-1}, a_i) = k_i$$

Example

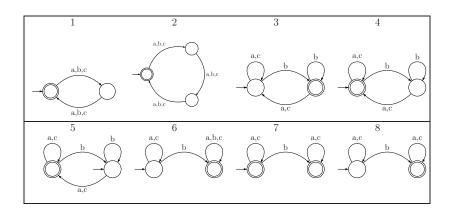


Exercices

Let $\Sigma = \{a, b, c\}$. Give deterministic finite state automata that accept the following languages:

- 1 The set of words with an even length.
- 2 The set of words where the number of occurrences of *b* is divisible by 3.
- 3 The set of words ending with a b.
- **1** The set of words not ending with a b.
- 5 The set of words non empty not ending with a b.
- **1** The set of words comprising at least a *b*.
- The set of words comprising at most a b.
- \odot The set of words comprising exactly one b.

Answers



Overview

- Formal Languages
- 2 Formal Grammars
- Regular Languages
 - Definition
 - Automata
 - Properties
- 4 Formal complexity of Natural Languages

Take an automaton with k states.

Take an automaton with k states. If the accepted language is infinite, then some words have more than k letters.

Take an automaton with k states. If the accepted language is infinite, then some words have more than k letters. Therefore, at least one state has to be "gone through" several times.

Take an automaton with k states.

If the accepted language is infinite,

then some words have more than k letters.

Therefore, at least one state has to be "gone through" several times.

That means there is a loop on that state.

Take an automaton with k states.

If the accepted language is infinite,

then some words have more than k letters.

Therefore, at least one state has to be "gone through" several times.

That means there is a loop on that state.

Then making any number of loops will end up with a word in L.

⇒ Pumping lemma

Pumping lemma: definition

Def. 18 (Pumping Lemma)

Let L be an infinite regular language.

(iii) $\forall i > 0$, $uv^i w \in L$

There exists an integer k such that:

$$\forall x \in L, |x| > k, \exists u, v, w \text{ such that } x = uvw, \text{ with:}$$

(i) $|v| \ge 1$
(ii) $|uv| \le k$

Pumping lemma: Illustration

Let's illustrate the lemma with a language which trivialy satisfies it: a^*bc .

Let k = 3, the work *abc* is long enough, and can be decomposed:

$$\frac{\varepsilon}{u}$$
 $\frac{a}{v}$ $\frac{b}{w}$

The three properties of the lemma are satisfied:

- |v| > 1 (v = a)
- $|uv| \le k \ (uv = a)$
- $\forall i \in \mathbb{N}$, $uv^iw(=a^ibc)$ belongs to the language by definition.

Pumping lemma: Consequences

The pumping lemma is a tool to prove that a language is **not** regular.

```
 \begin{array}{ccc} \mathcal{L} \text{ regular} & \Rightarrow & \text{pumping lemma } (\forall i, uv^i w \in \mathcal{L}) \\ \text{pumping lemma} & \not\Rightarrow & \mathcal{L} \text{ regular} \\ \end{array}
```

Pumping lemma: Consequences

The pumping lemma is a tool to prove that a language is **not** regular.

```
\mathcal{L} regular \Rightarrow pumping lemma (\forall i, uv^i w \in \mathcal{L}) pumping lemma \not\Rightarrow \mathcal{L} regular
```

to prove that ${\cal L}$ is

regular provide an automaton

not regular show that the pumping lemma does not apply

Pumping lemma: Consequences

Def. 19 (Consequences)

Let A be a k state automaton:

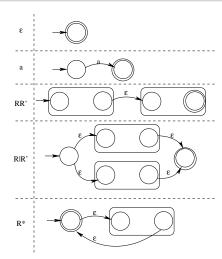
- $L(A) \neq \emptyset$ iff A recognises (at least) one word u s.t. |u| < k.
- ② L(A) is infinite *iff* A recognises (at least) one word u t.q. $k \le |u| < 2k$.

Closure

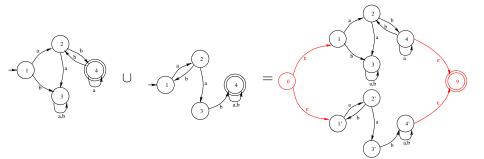
Regular languages are closed under various operations: if the languages L and L' are regular, so are:

- $L \cup L'$ (union); L.L' (product); L^* (Kleene star) (rational operations)
- $L \cap L'$ (intersection); \overline{L} (complement)
- . . .

Rational operations



Union of regular languages: an example



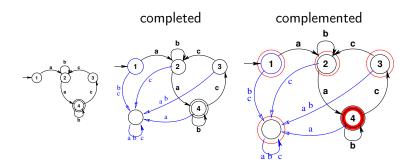
Intersection of regular languages

Algorithmic proof
Deterministic complete automata

L_1	а	b		L_2	а	b	$L_1 \cap L_2$	а	b
$\rightarrow 1$	2	4		→ 1	2	5	ightarrow (1,1)	(2,2)	(4,5)
2	l			2	5	3	(2,2)	(4,5)	(3,3)
\leftarrow 3	3	3		3	4	5	(4,5)	(4,5)	(4,5)
4	4	4		4	1	4	(3,3)	(3,4)	(3,5)
	'			5	5	5	(3,4)	(3,1)	(3,4)
				'			\leftarrow (3,1)	(3,2)	(3,4)
							(3,2)	(3,4)	(3,3)
							(3,5)	(3,5)	(3,5)

Complement of a regular language

Deterministic complete automata



Results: expressivity

- Any finite langage is regular
- aⁿb^m is regular
- $a^n b^n$ is not regular
- ww^R is not regular (R : reverse word)

- The "word problem" $\frac{?}{w \in L(A)}$ is decidable.
- ⇒ A computation on an automaton always stops.

- The "word problem" $w \in L(A)$ is decidable.
- ⇒ A computation on an automaton always stops.
 - The "emptiness problem" $L(A) \stackrel{?}{=} \emptyset$ is decidable.
- \Rightarrow It's enough to test all possible words of length $\leq k$, where k is the number of states.

- The "word problem" $\frac{?}{w \in L(A)}$ is decidable.
- ⇒ A computation on an automaton always stops.
 - The "emptiness problem" $L(A) \stackrel{?}{=} \emptyset$ is decidable.
- \Rightarrow It's enough to test all possible words of length $\leq k$, where k is the number of states.
 - The "finiteness problem" L(A) is finite is decidable.
- \Rightarrow Test all possible words whose length is between k and 2k. If there exists u s.t. k < |u| < 2k and $u \in L(A)$, then L(A) is infinite.

- The "word problem" $\frac{?}{w \in L(A)}$ is decidable.
- ⇒ A computation on an automaton always stops.
 - The "emptiness problem" $L(A) \stackrel{?}{=} \emptyset$ is decidable.
- \Rightarrow It's enough to test all possible words of length $\leq k$, where k is the number of states.
 - The "finiteness problem" L(A) is finite is decidable.
- \Rightarrow Test all possible words whose length is between k and 2k. If there exists u s.t. k < |u| < 2k and $u \in L(A)$, then L(A) is infinite.
 - The "equivalence problem" $L(A) \stackrel{?}{=} L(A')$ is decidable.
- $\Rightarrow\,$ it boils down to answering the question:

$$\left(L(\mathcal{A})\cap\overline{L(\mathcal{A}')}\right)\cup\left(L(\mathcal{A}')\cap\overline{L(\mathcal{A})}\right)=\emptyset$$

References I

- Bar-Hillel, Yehoshua, Perles, Micha, & Shamir, Eliahu. 1961. On formal properties of simple phrase structure grammars. STUF-Language Typology and Universals, 14(1-4), 143-172.
- Chomsky, Noam. 1957. Syntactic Structures. Den Haag: Mouton & Co.
- Gazdar, Gerald, & Pullum, Geoffrey K. 1985 (May). Computationally Relevant Properties of Natural Languages and Their Grammars. Tech. rept. Center for the Study of Language and Information, Leland Stanford Junior University.
- Gibson, Edward, & Thomas, James. 1997. The Complexity of Nested Structures in English: Evidence for the Syntactic Prediction Locality Theory of Linguistic Complexity. *Unpublished manuscript*, *Massachusetts Institute of Technology*.
- Joshi, Aravind K. 1985. Tree Adjoining Grammars: How Much Context-Sensitivity is Required to Provide Reasonable Structural Descriptions? Tech. rept. Department of Computer and Information Science, University of Pennsylvania.
- Langendoen, D Terence, & Postal, Paul Martin. 1984. The vastness of natural languages. Basil Blackwell Oxford.
- Mannell, Robert. 1999. Infinite number of sentences. part of a set of class notes on the Internet. http://clas.mq.edu.au/speech/infinite_sentences/.
- Schieber, Stuart M. 1985. Evidence against the Context-Freeness of Natural Language. *Linguistics and Philosophy*, 8(3), 333–343.
- Stabler, Edward P. 2011. Computational perspectives on minimalism. Oxford handbook of linguistic minimalism. 617–643.