
Matrice terme-document

QuatreVT Voyage Bal Bête Hum. Mme Bovary
119 Kw 82 kw 128 kw 117 kw

bataille 35 4 6 2
clair 105 26 96 52
facile 12 19 6 10
politique 11 0 9 5
voyage 17 196 94 44
idiot 2 1 2 6
amour 19 0 47 94

Quatrevingt-treize (Hugo)

Le voyage en ballon (Verne)

La bête humaine (Zola)

Mme Bovary (Flaubert)
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Documents comme vecteurs
QuatreVT Voyage Bal Bête Hum. Mme Bovary

bataille 35 4 6 2
amour 19 0 47 94
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Documents comme vecteurs
QuatreVT Voyage Bal Bête Hum. Mme Bovary

voyage 17 196 94 44
amour 19 0 47 94
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Vecteurs terme-document

On peut inverser la représentation : les dimensions sont maintenant
les documents, les vecteurs permettent de décrire des mots.

QuatreVT Voyage Bal Bête Hum. Mme Bovary

119 Kw 82 kw 128 kw 117 kw

bataille 35 4 6 2

clair 105 26 96 52

facile 12 19 6 10

politique 11 0 9 5

voyage 17 196 94 44

idiot 2 1 2 6

amour 19 0 47 94

amour (comme politique)
est le genre de mot qui n’apparaît pas dans “Le voyage en ballon”.
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On peut visualiser les mots dans l’espace (Quatrevingt-treize, Mme
Bovary) :

bataille (35,2)
politique (11,5)
amour (19,94)
voyage (17,44)
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Comptages distributionnels

arriver tomber habiller mourir
bataille 246 100 2 180
voyage 470 83 4 116
homme 1 819 1 205 339 1 499
femme 890 660 384 1 088
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Comptages distributionnels

arriver tomber habiller mourir
bataille 246 100 2 180 55 331
voyage 470 83 4 116 208 520
homme 1 819 1 205 339 1 499 668 289
femme 890 660 384 1 088 346 093
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Comptages distributionnels (normalisés)

arriver tomber habiller mourir
bataille 44 18 0 32
voyage 23 4 0 6
homme 27 18 5 22
femme 26 19 11 31
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Matrice terme-terme

More common: word-word matrix
(or "term-context matrix")

Two words are similar in meaning if their context vectors 
are similar

aardvark computer data pinch result sugar …
apricot 0 0 0 1 0 1
pineapple 0 0 0 1 0 1
digital 0 2 1 0 1 0
information 0 1 6 0 4 0

10 CHAPTER 6 • VECTOR SEMANTICS

tle, [1,1,8,15]; and soldier [2,2,12,36]. Each entry in the vector thus represents the
counts of the word’s occurrence in the document corresponding to that dimension.

For documents, we saw that similar documents had similar vectors, because sim-
ilar documents tend to have similar words. This same principle applies to words:
similar words have similar vectors because they tend to occur in similar documents.
The term-document matrix thus lets us represent the meaning of a word by the doc-
uments it tends to occur in.

However, it is most common to use a different kind of context for the dimensions
of a word’s vector representation. Rather than the term-document matrix we use the
term-term matrix, more commonly called the word-word matrix or the term-term-term

matrix
word-word

matrix context matrix, in which the columns are labeled by words rather than documents.
This matrix is thus of dimensionality |V |� |V | and each cell records the number of
times the row (target) word and the column (context) word co-occur in some context
in some training corpus. The context could be the document, in which case the cell
represents the number of times the two words appear in the same document. It is
most common, however, to use smaller contexts, generally a window around the
word, for example of 4 words to the left and 4 words to the right, in which case
the cell represents the number of times (in some training corpus) the column word
occurs in such a ±4 word window around the row word.

For example here are 7-word windows surrounding four sample words from the
Brown corpus (just one example of each word):

sugar, a sliced lemon, a tablespoonful of apricot jam, a pinch each of,
their enjoyment. Cautiously she sampled her first pineapple and another fruit whose taste she likened

well suited to programming on the digital computer. In finding the optimal R-stage policy from
for the purpose of gathering data and information necessary for the study authorized in the

For each word we collect the counts (from the windows around each occurrence)
of the occurrences of context words. Fig. 6.5 shows a selection from the word-word
co-occurrence matrix computed from the Brown corpus for these four words.

aardvark ... computer data pinch result sugar ...
apricot 0 ... 0 0 1 0 1

pineapple 0 ... 0 0 1 0 1
digital 0 ... 2 1 0 1 0

information 0 ... 1 6 0 4 0
Figure 6.5 Co-occurrence vectors for four words, computed from the Brown corpus, show-
ing only six of the dimensions (hand-picked for pedagogical purposes). The vector for the
word digital is outlined in red. Note that a real vector would have vastly more dimensions
and thus be much sparser.

Note in Fig. 6.5 that the two words apricot and pineapple are more similar to
each other (both pinch and sugar tend to occur in their window) than they are to
other words like digital; conversely, digital and information are more similar to each
other than, say, to apricot. Fig. 6.6 shows a spatial visualization.

Note that |V |, the length of the vector, is generally the size of the vocabulary,
usually between 10,000 and 50,000 words (using the most frequent words in the
training corpus; keeping words after about the most frequent 50,000 or so is gener-
ally not helpful). But of course since most of these numbers are zero these are sparse
vector representations, and there are efficient algorithms for storing and computing
with sparse matrices.

Now that we have some intuitions, let’s move on to examine the details of com-
puting word similarity. Afterwards we’ll discuss the tf-idf method of weighting
cells.
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Reminders from linear algebra

6.4 • COSINE FOR MEASURING SIMILARITY 11
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Figure 6.6 A spatial visualization of word vectors for digital and information, showing just
two of the dimensions, corresponding to the words data and result.

6.4 Cosine for measuring similarity

To define similarity between two target words v and w, we need a measure for taking
two such vectors and giving a measure of vector similarity. By far the most common
similarity metric is the cosine of the angle between the vectors.

The cosine—like most measures for vector similarity used in NLP—is based on
the dot product operator from linear algebra, also called the inner product:dot product

inner product

dot-product(�v,�w) =�v ·�w =
N�

i=1

viwi = v1w1 + v2w2 + ...+ vNwN (6.7)

As we will see, most metrics for similarity between vectors are based on the dot
product. The dot product acts as a similarity metric because it will tend to be high
just when the two vectors have large values in the same dimensions. Alternatively,
vectors that have zeros in different dimensions—orthogonal vectors—will have a
dot product of 0, representing their strong dissimilarity.

This raw dot-product, however, has a problem as a similarity metric: it favors
long vectors. The vector length is defined asvector length

|�v| =

����
N�

i=1

v2
i (6.8)

The dot product is higher if a vector is longer, with higher values in each dimension.
More frequent words have longer vectors, since they tend to co-occur with more
words and have higher co-occurrence values with each of them. The raw dot product
thus will be higher for frequent words. But this is a problem; we’d like a similarity
metric that tells us how similar two words are regardless of their frequency.

The simplest way to modify the dot product to normalize for the vector length is
to divide the dot product by the lengths of each of the two vectors. This normalized
dot product turns out to be the same as the cosine of the angle between the two
vectors, following from the definition of the dot product between two vectors �a and
�b:

vector length

6.4 • COSINE FOR MEASURING SIMILARITY 11
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Figure 6.6 A spatial visualization of word vectors for digital and information, showing just
two of the dimensions, corresponding to the words data and result.

6.4 Cosine for measuring similarity

To define similarity between two target words v and w, we need a measure for taking
two such vectors and giving a measure of vector similarity. By far the most common
similarity metric is the cosine of the angle between the vectors.

The cosine—like most measures for vector similarity used in NLP—is based on
the dot product operator from linear algebra, also called the inner product:dot product

inner product

dot-product(�v,�w) =�v ·�w =
N�

i=1

viwi = v1w1 + v2w2 + ...+ vNwN (6.7)

As we will see, most metrics for similarity between vectors are based on the dot
product. The dot product acts as a similarity metric because it will tend to be high
just when the two vectors have large values in the same dimensions. Alternatively,
vectors that have zeros in different dimensions—orthogonal vectors—will have a
dot product of 0, representing their strong dissimilarity.

This raw dot-product, however, has a problem as a similarity metric: it favors
long vectors. The vector length is defined asvector length

|�v| =
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The dot product is higher if a vector is longer, with higher values in each dimension.
More frequent words have longer vectors, since they tend to co-occur with more
words and have higher co-occurrence values with each of them. The raw dot product
thus will be higher for frequent words. But this is a problem; we’d like a similarity
metric that tells us how similar two words are regardless of their frequency.

The simplest way to modify the dot product to normalize for the vector length is
to divide the dot product by the lengths of each of the two vectors. This normalized
dot product turns out to be the same as the cosine of the angle between the two
vectors, following from the definition of the dot product between two vectors �a and
�b:
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Cosine for computing similarity

vi is the count for word v in context i
wi is the count for word w in context i.

Cos(v,w) is the cosine similarity of v and w

Sec. 6.3

12 CHAPTER 6 • VECTOR SEMANTICS

�a ·�b = |�a||�b|cos�
�a ·�b
|�a||�b|

= cos� (6.9)

The cosine similarity metric between two vectors�v and �w thus can be computedcosine

as:

cosine(�v,�w) =
�v ·�w
|�v||�w| =

N�

i=1

viwi

����
N�

i=1

v2
i

����
N�

i=1

w2
i

(6.10)

For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from �a byunit vector
dividing it by |�a|. For unit vectors, the dot product is the same as the cosine.

The cosine value ranges from 1 for vectors pointing in the same direction, through
0 for vectors that are orthogonal, to -1 for vectors pointing in opposite directions.
But raw frequency values are non-negative, so the cosine for these vectors ranges
from 0–1.

Let’s see how the cosine computes which of the words apricot or digital is closer
in meaning to information, just using raw counts from the following simplified table:

large data computer
apricot 2 0 0
digital 0 1 2

information 1 6 1

cos(apricot, information) =
2+0+0�

4+0+0
�

1+36+1
=

2
2
�

38
= .16

cos(digital, information) =
0+6+2�

0+1+4
�

1+36+1
=

8�
38

�
5

= .58 (6.11)

The model decides that information is closer to digital than it is to apricot, a
result that seems sensible. Fig. 6.7 shows a visualization.

6.5 TF-IDF: Weighing terms in the vector

The co-occurrence matrix in Fig. 6.5 represented each cell by the raw frequency of
the co-occurrence of two words.

It turns out, however, that simple frequency isn’t the best measure of association
between words. One problem is that raw frequency is very skewed and not very
discriminative. If we want to know what kinds of contexts are shared by apricot and
pineapple but not by digital and information, we’re not going to get good discrimi-
nation from words like the, it, or they, which occur frequently with all sorts of words
and aren’t informative about any particular word.

It’s a bit of a paradox. Word that occur nearby frequently (maybe sugar appears
often in our corpus near apricot) are more important than words that only appear
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6.5 TF-IDF: Weighing terms in the vector

The co-occurrence matrix in Fig. 6.5 represented each cell by the raw frequency of
the co-occurrence of two words.

It turns out, however, that simple frequency isn’t the best measure of association
between words. One problem is that raw frequency is very skewed and not very
discriminative. If we want to know what kinds of contexts are shared by apricot and
pineapple but not by digital and information, we’re not going to get good discrimi-
nation from words like the, it, or they, which occur frequently with all sorts of words
and aren’t informative about any particular word.

It’s a bit of a paradox. Word that occur nearby frequently (maybe sugar appears
often in our corpus near apricot) are more important than words that only appear

17 / 13



Cosine as a similarity metric

-1: vectors point in opposite directions 

+1:  vectors point in same directions

0: vectors are orthogonal

Frequency is non-negative, so  cosine range 0-1

51
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large data computer
apricot 1 0 0
digital 0 1 2
information 1 6 1

52

Which pair of words is more similar?
cosine(apricot,information) = 

cosine(digital,information) =

cosine(apricot,digital) =

cos(v, w) =
v • w
v w

=
v
v
•
w
w
=

viwii=1

N
∑
vi
2

i=1

N
∑ wi

2
i=1

N
∑

1+ 0+ 0

1+ 0+ 0

1+36+1

1+36+1

0+1+ 4

0+1+ 4

     1+ 0+ 0    

     0+ 6+ 2    

     0+ 0+ 0    

=
1
38

= .16

=
8
38 5

= .58

= 0
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Visualizing cosines 
(well, angles)
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Dimension 2: ‘data’
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Représentations lexicales contextuelles (Smith, 2020)
Mots comme des vecteurs distributionnels

Exemple : clustering
Computational Linguistics Volume 18, Number 4 
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Figure 2 
Sample subtrees from a 1,000-word mutual information tree. 

iL I 

to this single cluster and the leaves of which correspond to the words in the vocabulary. 
Intermediate nodes of the tree correspond to groupings of words intermediate between 
single words and the entire vocabulary. Words that are statistically similar with respect 
to their immediate neighbors in running text will be close together in the tree. We 
have applied this tree-building algorithm to vocabularies of up to 5,000 words. Figure 
2 shows some of the substructures in a tree constructed in this manner for the 1,000 
most frequent words in a collection of office correspondence. 

Beyond 5,000 words this algorithm also fails of practicality. To obtain clusters for 
larger vocabularies, we proceed as follows. We arrange the words in the vocabulary 
in order of frequency with the most frequent words first and assign each of the first 
C words to its own, distinct class. At the first step of the algorithm, we assign the 
(C Jr 1) st most probable word to a new class and merge that pair among the resulting 
C + 1 classes for which the loss in average mutual information is least. At the k th step 
of the algorithm, we assign the (C + k) th most probable word to a new class. This 
restores the number of classes to C + 1, and we again merge that pair for which the 
loss in average mutual information is least. After V - C steps, each of the words in 
the vocabulary will have been assigned to one of C classes. 

We have used this algorithm to divide the 260,741-word vocabulary of Table I into 
1,000 classes. Table 2 contains examples of classes that we find particularly interesting. 
Table 3 contains examples that were selected at random. Each of the lines in the tables 
contains members of a different class. The average class has 260 words and so to 
make the table manageable, we include only words that occur at least ten times and 

474 

Source : (Brown et al. , 1992)
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Représentations lexicales contextuelles (Smith, 2020)
Mots comme des vecteurs distributionnels

Exemple : brown clusters sur worpus de tweets
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review articles

outputs to a task (at least one of which 
consists of words) and a mechanism 
for generalizing from those input-out-
put pairings. Such a mechanism 
should ideally exploit similarity: any-
thing it discovers about one word 
should transfer to similar words.

Where might this information about 
similarity come from? There are two 
strands of thought about how to bring 
such information into programs. We 
might trace them back to the rationalist 
and empiricist traditions in philosophy, 
though I would argue it’s unwise to think 
of them in opposition to each other.

One strand suggests that humans, 
especially those trained in the science 
of human language, know this informa-
tion, and we might design data struc-
tures that encode it explicitly, allowing 
our programs to access it as needed. An 
example of such an effort is WordNet,13 
a lexical database that stores words and 
relationships among them such as syn-
onymy (when two words can mean the 
same thing) and hyponymy (when one 
word’s meaning is a more specific case 
of another’s). WordNet also explicitly 
captures the different senses of words 
that take multiple meanings, such as fan 
(a machine for blowing air, or someone 
who is supportive of a sports team or ce-
lebrity). Linguistic theories of sentence 
structure (syntax) offer another way to 
think about word similarity in the form 
of categories like “noun” and “verb.”

The other strand suggests the infor-
mation resides in artifacts such as text 
corpora, and we can use a separate set 
of programs to collect and suitably or-
ganize the information for use in NLP. 
With the rise of ever-larger text collec-
tions on the Web, this strand came to 
dominate, and the programs used to 
draw information from corpora have 
progressed through several stages, 
from count-based statistics, to mod-
eling using more advanced statisti-
cal methods, to increasingly powerful 
tools from machine learning.

From either of these strands (or, 
more commonly in practice, by inter-
twining them), we can derive a notion 
of a word type as a vector instead of an 
integer.d In doing so, we can choose the 

d A vector is a list, usually a list of numbers, with 
a known length, which we call its dimension-
ality. It is often interpreted and visualized as a 
direction in a Euclidean space.

dimensionality of the vector and allo-
cate different dimensions for different 
purposes. For example:

 ! Each word type may be given its own 
dimension and assigned 1 in that di-
mension (while all other words get 0 in 
that dimension). Using dimensions only 
in this way, and no other, is essentially 
equivalent to integerizing the words; it 
is known as a “one hot” representation, 
because each word type’s vector has a 
single 1 (“hot”) and is otherwise 0.

 ! For a collection of word types that 
belong to a known class (for example, 
days of the week), we can use a dimen-
sion that is given binary values. Word 
types that are members of the class 
get assigned 1 in this dimension, and 
other words get 0.

 ! For word types that are variants of 
the same underlying root, we can sim-
ilarly use a dimension to place them 
in a class. For example, in this dimen-
sion, know, known, knew, and knows 
would all get assigned 1, and words 
that are not forms of know get 0.

 ! More loosely, we can use surface 
attributes to “tie together” word types 
that look similar; examples include 
capitalization patterns, lengths, and 
the presence of a digit.

 ! If word types’ meanings can be 
mapped to magnitudes, we might al-
locate dimensions to try to capture 
these. For example, in a dimension 
we choose to associate with “typical 
weight” elephant might get 12,000 
while cat might get 9. Of course, it’s 
not entirely clear what value to give 
purple or throw in this dimension.

Examples abound in NLP of the al-
location of dimensions to vectors 
representing word types (either syn-
tactic, like “verb,” or semantic, like 
“animate”), or to multiword sequenc-
es (for example, White House and hot 
dog). The technical term used for 
these dimensions is features. Features 
can be designed by experts, or they 
can be derived using automated algo-
rithms. Note that some features can 
be calculated even on out-of-vocabu-
lary word types. For example, noting 
the capitalization pattern of charac-
ters in an out-of-vocabulary word might 
help a system guess whether it should 
be treated like a person’s name.

Words as Distributional 
Vectors: Context as Meaning
An important idea in linguistics is that 
words (or expressions) that can be 

Figure 1. Example Brown clusters. 

These were derived from 56M tweets, see Owoputi et al..26 for details. Shown are the 
10 most frequent words in clusters in the section of the hierarchy with prefix bit string 
00110. Intermediate nodes in the tree correspond to clusters that contain all words in 
their descendants. Note that differently spelled variants of words tend to cluster together, 
as do words that express similar meanings, including hashtags. The full set of clusters 
can be explored at http://www.cs.cmu.edu/~ark/TweetNLP/cluster_viewer.html. Note that 
there are several Unicode characters that are visually similar to the apostrophe, resulting 
in different strings with similar usage.

Source : (Smith, 2020)
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