
Embeddings

Sémantique (lexicale) distributionnelle
Chapitre 6, Jurafsky & Martin (2019)

P. Amsili

nov. 2020

Embeddings

Vecteurs dispersés

Sémantique distributionnelle : principe

Programme

Plusieurs types d’embeddings :
Tf-Idf I Une baseline courante

I Vecteurs dispersés (sparse)
I Les mots sont représentés par une fonction

simple des fréquences des mots voisins
PPMI I mesure de l’informativité des contextes par

rapport à un mot
Word2vec I Vecteurs denses

I créés par l’entraînement d’un classifieur à
distinguer les mots proches et lointains

Embeddings + récents

Embeddings

Vecteurs dispersés

Tf-Idf

Tf-Idf

Term-frequency / Inverse document frequency

I Méthode de pondération (de la relation entre un mot-clé
(terme) et un document)

I Courante en Recherche d’information (et Fouille de Textes)
I Une des plus anciennes utilisations des modèles par espace

vectoriel (1971)
I terme = token ou lemme ou mot-clé ou mwe ou n-gramme...

Embeddings

Vecteurs dispersés

Tf-Idf

Matrice terme-document

QuatreVT Voyage Bal Bête Hum. Mme Bovary
119 Kw 82 kw 128 kw 117 kw

bataille 35 4 6 2
clair 105 26 96 52
facile 12 19 6 10
politique 11 0 9 5
voyage 17 196 94 44
idiot 2 1 2 6
amour 19 0 47 94

Quatrevingt-treize (Hugo)

Le voyage en ballon (Verne)

La bête humaine (Zola)

Mme Bovary (Flaubert)

Embeddings

Vecteurs dispersés

Tf-Idf

Documents comme vecteurs
QuatreVT Voyage Bal Bête Hum. Mme Bovary

bataille 35 4 6 2
amour 19 0 47 94

Embeddings

Vecteurs dispersés

Tf-Idf

Documents comme vecteurs
QuatreVT Voyage Bal Bête Hum. Mme Bovary

voyage 17 196 94 44
amour 19 0 47 94

Embeddings

Vecteurs dispersés

Tf-Idf

Méthode IR

Recherche d’information : identification du document d dans la
collection D qui correspond le mieux à une requête q.
La requête q peut être représentée par un vecteur (de taille |V |)
On doit trouver une mesure de similarité entre chaque (vecteur de)
document et la requête.

Embeddings

Vecteurs dispersés

Tf-Idf

Vecteurs terme-document

On peut inverser la représentation : les dimensions sont maintenant
les documents, les vecteurs permettent de décrire des mots.

QuatreVT Voyage Bal Bête Hum. Mme Bovary

119 Kw 82 kw 128 kw 117 kw

bataille 35 4 6 2

clair 105 26 96 52

facile 12 19 6 10

politique 11 0 9 5

voyage 17 196 94 44

idiot 2 1 2 6

amour 19 0 47 94

amour (comme politique)
est le genre de mot qui n’apparaît pas dans “Le voyage en ballon”.

Embeddings

Vecteurs dispersés

Tf-Idf

On peut visualiser les mots dans l’espace (Quatrevingt-treize, Mme
Bovary) :

bataille (35,2)
politique (11,5)
amour (19,94)
voyage (17,44)

Embeddings

Vecteurs dispersés

Tf-Idf

Matrice terme-terme

More common: word-word matrix
(or "term-context matrix")

Two words are similar in meaning if their context vectors
are similar

aardvark computer data pinch result sugar …
apricot 0 0 0 1 0 1
pineapple 0 0 0 1 0 1
digital 0 2 1 0 1 0
information 0 1 6 0 4 0

10 CHAPTER 6 • VECTOR SEMANTICS

tle, [1,1,8,15]; and soldier [2,2,12,36]. Each entry in the vector thus represents the
counts of the word’s occurrence in the document corresponding to that dimension.

For documents, we saw that similar documents had similar vectors, because sim-
ilar documents tend to have similar words. This same principle applies to words:
similar words have similar vectors because they tend to occur in similar documents.
The term-document matrix thus lets us represent the meaning of a word by the doc-
uments it tends to occur in.

However, it is most common to use a different kind of context for the dimensions
of a word’s vector representation. Rather than the term-document matrix we use the
term-term matrix, more commonly called the word-word matrix or the term-term-term

matrix
word-word

matrix context matrix, in which the columns are labeled by words rather than documents.
This matrix is thus of dimensionality |V |� |V | and each cell records the number of
times the row (target) word and the column (context) word co-occur in some context
in some training corpus. The context could be the document, in which case the cell
represents the number of times the two words appear in the same document. It is
most common, however, to use smaller contexts, generally a window around the
word, for example of 4 words to the left and 4 words to the right, in which case
the cell represents the number of times (in some training corpus) the column word
occurs in such a ±4 word window around the row word.

For example here are 7-word windows surrounding four sample words from the
Brown corpus (just one example of each word):

sugar, a sliced lemon, a tablespoonful of apricot jam, a pinch each of,
their enjoyment. Cautiously she sampled her first pineapple and another fruit whose taste she likened

well suited to programming on the digital computer. In finding the optimal R-stage policy from
for the purpose of gathering data and information necessary for the study authorized in the

For each word we collect the counts (from the windows around each occurrence)
of the occurrences of context words. Fig. 6.5 shows a selection from the word-word
co-occurrence matrix computed from the Brown corpus for these four words.

aardvark ... computer data pinch result sugar ...
apricot 0 ... 0 0 1 0 1

pineapple 0 ... 0 0 1 0 1
digital 0 ... 2 1 0 1 0

information 0 ... 1 6 0 4 0
Figure 6.5 Co-occurrence vectors for four words, computed from the Brown corpus, show-
ing only six of the dimensions (hand-picked for pedagogical purposes). The vector for the
word digital is outlined in red. Note that a real vector would have vastly more dimensions
and thus be much sparser.

Note in Fig. 6.5 that the two words apricot and pineapple are more similar to
each other (both pinch and sugar tend to occur in their window) than they are to
other words like digital; conversely, digital and information are more similar to each
other than, say, to apricot. Fig. 6.6 shows a spatial visualization.

Note that |V |, the length of the vector, is generally the size of the vocabulary,
usually between 10,000 and 50,000 words (using the most frequent words in the
training corpus; keeping words after about the most frequent 50,000 or so is gener-
ally not helpful). But of course since most of these numbers are zero these are sparse
vector representations, and there are efficient algorithms for storing and computing
with sparse matrices.

Now that we have some intuitions, let’s move on to examine the details of com-
puting word similarity. Afterwards we’ll discuss the tf-idf method of weighting
cells.

Embeddings

Vecteurs dispersés

Tf-Idf

1 2 3 4 5 6

1

2 digital
 [1,1]

re
su

lt

 data

information
 [6,4] 3

4

Embeddings

Vecteurs dispersés

Tf-Idf

Reminders from linear algebra

6.4 • COSINE FOR MEASURING SIMILARITY 11

1 2 3 4 5 6

1

2 digital
 [1,1]

re
su

lt

 data

information
 [6,4] 3

4

Figure 6.6 A spatial visualization of word vectors for digital and information, showing just
two of the dimensions, corresponding to the words data and result.

6.4 Cosine for measuring similarity

To define similarity between two target words v and w, we need a measure for taking
two such vectors and giving a measure of vector similarity. By far the most common
similarity metric is the cosine of the angle between the vectors.

The cosine—like most measures for vector similarity used in NLP—is based on
the dot product operator from linear algebra, also called the inner product:dot product

inner product

dot-product(�v,�w) =�v ·�w =
N�

i=1

viwi = v1w1 + v2w2 + ...+ vNwN (6.7)

As we will see, most metrics for similarity between vectors are based on the dot
product. The dot product acts as a similarity metric because it will tend to be high
just when the two vectors have large values in the same dimensions. Alternatively,
vectors that have zeros in different dimensions—orthogonal vectors—will have a
dot product of 0, representing their strong dissimilarity.

This raw dot-product, however, has a problem as a similarity metric: it favors
long vectors. The vector length is defined asvector length

|�v| =

����
N�

i=1

v2
i (6.8)

The dot product is higher if a vector is longer, with higher values in each dimension.
More frequent words have longer vectors, since they tend to co-occur with more
words and have higher co-occurrence values with each of them. The raw dot product
thus will be higher for frequent words. But this is a problem; we’d like a similarity
metric that tells us how similar two words are regardless of their frequency.

The simplest way to modify the dot product to normalize for the vector length is
to divide the dot product by the lengths of each of the two vectors. This normalized
dot product turns out to be the same as the cosine of the angle between the two
vectors, following from the definition of the dot product between two vectors �a and
�b:

vector length

6.4 • COSINE FOR MEASURING SIMILARITY 11

1 2 3 4 5 6

1

2 digital
 [1,1]

re
su

lt

 data

information
 [6,4] 3

4

Figure 6.6 A spatial visualization of word vectors for digital and information, showing just
two of the dimensions, corresponding to the words data and result.

6.4 Cosine for measuring similarity

To define similarity between two target words v and w, we need a measure for taking
two such vectors and giving a measure of vector similarity. By far the most common
similarity metric is the cosine of the angle between the vectors.

The cosine—like most measures for vector similarity used in NLP—is based on
the dot product operator from linear algebra, also called the inner product:dot product

inner product

dot-product(�v,�w) =�v ·�w =
N�

i=1

viwi = v1w1 + v2w2 + ...+ vNwN (6.7)

As we will see, most metrics for similarity between vectors are based on the dot
product. The dot product acts as a similarity metric because it will tend to be high
just when the two vectors have large values in the same dimensions. Alternatively,
vectors that have zeros in different dimensions—orthogonal vectors—will have a
dot product of 0, representing their strong dissimilarity.

This raw dot-product, however, has a problem as a similarity metric: it favors
long vectors. The vector length is defined asvector length

|�v| =

����
N�

i=1

v2
i (6.8)

The dot product is higher if a vector is longer, with higher values in each dimension.
More frequent words have longer vectors, since they tend to co-occur with more
words and have higher co-occurrence values with each of them. The raw dot product
thus will be higher for frequent words. But this is a problem; we’d like a similarity
metric that tells us how similar two words are regardless of their frequency.

The simplest way to modify the dot product to normalize for the vector length is
to divide the dot product by the lengths of each of the two vectors. This normalized
dot product turns out to be the same as the cosine of the angle between the two
vectors, following from the definition of the dot product between two vectors �a and
�b:

Embeddings

Vecteurs dispersés

Tf-Idf

Cosine for computing similarity

vi is the count for word v in context i
wi is the count for word w in context i.

Cos(v,w) is the cosine similarity of v and w

Sec. 6.3

12 CHAPTER 6 • VECTOR SEMANTICS

�a ·�b = |�a||�b|cos�
�a ·�b
|�a||�b|

= cos� (6.9)

The cosine similarity metric between two vectors�v and �w thus can be computedcosine

as:

cosine(�v,�w) =
�v ·�w
|�v||�w| =

N�

i=1

viwi

����
N�

i=1

v2
i

����
N�

i=1

w2
i

(6.10)

For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from �a byunit vector
dividing it by |�a|. For unit vectors, the dot product is the same as the cosine.

The cosine value ranges from 1 for vectors pointing in the same direction, through
0 for vectors that are orthogonal, to -1 for vectors pointing in opposite directions.
But raw frequency values are non-negative, so the cosine for these vectors ranges
from 0–1.

Let’s see how the cosine computes which of the words apricot or digital is closer
in meaning to information, just using raw counts from the following simplified table:

large data computer
apricot 2 0 0
digital 0 1 2

information 1 6 1

cos(apricot, information) =
2+0+0�

4+0+0
�

1+36+1
=

2
2
�

38
= .16

cos(digital, information) =
0+6+2�

0+1+4
�

1+36+1
=

8�
38

�
5

= .58 (6.11)

The model decides that information is closer to digital than it is to apricot, a
result that seems sensible. Fig. 6.7 shows a visualization.

6.5 TF-IDF: Weighing terms in the vector

The co-occurrence matrix in Fig. 6.5 represented each cell by the raw frequency of
the co-occurrence of two words.

It turns out, however, that simple frequency isn’t the best measure of association
between words. One problem is that raw frequency is very skewed and not very
discriminative. If we want to know what kinds of contexts are shared by apricot and
pineapple but not by digital and information, we’re not going to get good discrimi-
nation from words like the, it, or they, which occur frequently with all sorts of words
and aren’t informative about any particular word.

It’s a bit of a paradox. Word that occur nearby frequently (maybe sugar appears
often in our corpus near apricot) are more important than words that only appear

12 CHAPTER 6 • VECTOR SEMANTICS

�a ·�b = |�a||�b|cos�
�a ·�b
|�a||�b|

= cos� (6.9)

The cosine similarity metric between two vectors�v and �w thus can be computedcosine

as:

cosine(�v,�w) =
�v ·�w
|�v||�w| =

N�

i=1

viwi

����
N�

i=1

v2
i

����
N�

i=1

w2
i

(6.10)

For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from �a byunit vector
dividing it by |�a|. For unit vectors, the dot product is the same as the cosine.

The cosine value ranges from 1 for vectors pointing in the same direction, through
0 for vectors that are orthogonal, to -1 for vectors pointing in opposite directions.
But raw frequency values are non-negative, so the cosine for these vectors ranges
from 0–1.

Let’s see how the cosine computes which of the words apricot or digital is closer
in meaning to information, just using raw counts from the following simplified table:

large data computer
apricot 2 0 0
digital 0 1 2

information 1 6 1

cos(apricot, information) =
2+0+0�

4+0+0
�

1+36+1
=

2
2
�

38
= .16

cos(digital, information) =
0+6+2�

0+1+4
�

1+36+1
=

8�
38

�
5

= .58 (6.11)

The model decides that information is closer to digital than it is to apricot, a
result that seems sensible. Fig. 6.7 shows a visualization.

6.5 TF-IDF: Weighing terms in the vector

The co-occurrence matrix in Fig. 6.5 represented each cell by the raw frequency of
the co-occurrence of two words.

It turns out, however, that simple frequency isn’t the best measure of association
between words. One problem is that raw frequency is very skewed and not very
discriminative. If we want to know what kinds of contexts are shared by apricot and
pineapple but not by digital and information, we’re not going to get good discrimi-
nation from words like the, it, or they, which occur frequently with all sorts of words
and aren’t informative about any particular word.

It’s a bit of a paradox. Word that occur nearby frequently (maybe sugar appears
often in our corpus near apricot) are more important than words that only appear

Embeddings

Vecteurs dispersés

Tf-Idf

Cosine as a similarity metric

-1: vectors point in opposite directions

+1: vectors point in same directions

0: vectors are orthogonal

Frequency is non-negative, so cosine range 0-1

51

Embeddings

Vecteurs dispersés

Tf-Idf

large data computer
apricot 1 0 0
digital 0 1 2
information 1 6 1

52

Which pair of words is more similar?
cosine(apricot,information) =

cosine(digital,information) =

cosine(apricot,digital) =

cos(v, w) =
v • w
v w

=
v
v
•
w
w
=

viwii=1

N
∑
vi
2

i=1

N
∑ wi

2
i=1

N
∑

1+ 0+ 0

1+ 0+ 0

1+36+1

1+36+1

0+1+ 4

0+1+ 4

 1+ 0+ 0

 0+ 6+ 2

 0+ 0+ 0

=
1
38

= .16

=
8
38 5

= .58

= 0

Embeddings

Vecteurs dispersés

Tf-Idf

Visualizing cosines
(well, angles)

1 2 3 4 5 6 7

1

2

3

digital

apricot
information

D
im

en
si

on
 1

: ‘
la

rg
e’

Dimension 2: ‘data’

Embeddings

Vecteurs dispersés

Tf-Idf

Discussion : fréquence brute

Les fréquences brutes sont problématiques

I La fréquence est utile :
Si sugar apparaît plus que apricot c’est une information utile

I Mais les mots trop fréquents (comme it, the) ne sont pas
informatifs

I La normalisation (par la longueur du texte) peut aider,
mais elle ne change rien à ce paradoxe.

) Tf-Idf

Embeddings

Vecteurs dispersés

Tf-Idf

tf-idf: combine two factors
tf: term frequency. frequency count (usually log-transformed):

Idf: inverse document frequency: tf-

6.5 • TF-IDF: WEIGHING TERMS IN THE VECTOR 13

1 2 3 4 5 6 7

1

2

3

digital

apricot
information

D
im

en
si

on
 1

: ‘
la

rg
e’

Dimension 2: ‘data’

Figure 6.7 A graphical demonstration of the cosine measure of similarity, showing vectors
for three words (apricot, digital, and information) in the two dimensional space defined by
counts of the words data and large in the neighborhood. Note that the angle between digital
and information is smaller than the angle between apricot and information. When two vectors
are more similar, the cosine is larger but the angle is smaller; the cosine has its maximum (1)
when the angle between two vectors is smallest (0�); the cosine of all other angles is less than
1.

once or twice. Yet words that are too frequent—ubiquitous, like the— are unimpor-
tant. How can we balance these two conflicting constraints?

The tf-idf algorithm (the ‘-’ here is a hyphen, not a minus sign) algorithm is the
product of two terms, each term capturing one of these two intuitions:

1. The first is the term frequency (Luhn, 1957): simply the frequency of theterm frequency

word in the document, although we may also use functions of this frequency
like the log frequency.

2. The second factor is used to give a higher weight to words that occur only
in a few documents. Terms that are limited to a few documents are useful
for discriminating those documents from the rest of the collection; terms that
occur frequently across the entire collection aren’t as helpful. The inverse
document frequency or IDF term weight (Sparck Jones, 1972) is one way of

inverse
document
frequency

IDF assigning higher weights to these more discriminative words. IDF is defined
using the fraction N/dfi, where N is the total number of documents in the
collection, and dfi is the number of documents in which term i occurs. The
fewer documents in which a term occurs, the higher this weight. The lowest
weight of 1 is assigned to terms that occur in all the documents. Because of
the large number of documents in many collections, this measure is usually
squashed with a log function.

It’s usually clear what counts as a document: when processing a collection
of encyclopedia articles like Wikipedia, the document is a Wikipedia page; in
processing newspaper articles, the document is a single article. Occasionally
your corpus might not have appropriate document divisions and you might
need to break up the corpus into documents yourself.

The resulting definition for inverse document frequency (IDF) is thus

idfi = log
�

N
dfi

�
(6.12)

The tf-idf weighting of the value for word i in document j, wi j thus combinestf-idf

Total # of docs in collection

of docs that have word i

14 CHAPTER 6 • VECTOR SEMANTICS

Collection Frequency Document Frequency
Romeo 113 1
action 113 31

We assign importance to these more discriminative words like Romeo via
the inverse document frequency or idf term weight (Sparck Jones, 1972).idf
The idf is defined using the fraction N/dft , where N is the total number of
documents in the collection, and dft is the number of documents in which
term t occurs. The fewer documents in which a term occurs, the higher this
weight. The lowest weight of 1 is assigned to terms that occur in all the
documents. It’s usually clear what counts as a document: in Shakespeare
we would use a play; when processing a collection of encyclopedia articles
like Wikipedia, the document is a Wikipedia page; in processing newspaper
articles, the document is a single article. Occasionally your corpus might
not have appropriate document divisions and you might need to break up the
corpus into documents yourself for the purposes of computing idf.

Because of the large number of documents in many collections, this mea-
sure is usually squashed with a log function. The resulting definition for in-
verse document frequency (idf) is thus

idft = log10

�
N
dft

�
(6.12)

Here are some idf values for some words in the Shakespeare corpus, ranging
from extremely informative words which occur in only one play like Romeo, to
those that occur in a few like salad or Falstaff, to those which are very common like
fool or so common as to be completely non-discriminative since they occur in all 37
plays like good or sweet.3

Word df idf
Romeo 1 1.57
salad 2 1.27
Falstaff 4 0.967
forest 12 0.489
battle 21 0.074
fool 36 0.012
good 37 0
sweet 37 0

The tf-idf weighting of the value for word t in document d, wt,d thus combinestf-idf
term frequency with idf:

wt,d = tft,d � idft (6.13)

Fig. 6.8 applies tf-idf weighting to the Shakespeare term-document matrix in Fig. 6.2.
Note that the tf-idf values for the dimension corresponding to the word good have
now all become 0; since this word appears in every document, the tf-idf algorithm
leads it to be ignored in any comparison of the plays. Similarly, the word fool, which
appears in 36 out of the 37 plays, has a much lower weight.

The tf-idf weighting is by far the dominant way of weighting co-occurrence ma-
trices in information retrieval, but also plays a role in many other aspects of natural

3 Sweet was one of Shakespeare’s favorite adjectives, a fact probably related to the increased use of
sugar in European recipes around the turn of the 16th century (Jurafsky, 2014, p. 175).

tf-idf value for word t in document d:

Words like "the" or "good" have very low idf

6.5 • TF-IDF: WEIGHING TERMS IN THE VECTOR 13

1 2 3 4 5 6 7

1

2

3

digital

apricot
information

D
im

en
si

on
 1

: ‘
la

rg
e’

Dimension 2: ‘data’

Figure 6.7 A graphical demonstration of cosine similarity, showing vectors for three words
(apricot, digital, and information) in the two dimensional space defined by counts of the
words data and large in the neighborhood. Note that the angle between digital and informa-
tion is smaller than the angle between apricot and information. When two vectors are more
similar, the cosine is larger but the angle is smaller; the cosine has its maximum (1) when the
angle between two vectors is smallest (0�); the cosine of all other angles is less than 1.

It’s a bit of a paradox. Word that occur nearby frequently (maybe sugar appears
often in our corpus near apricot) are more important than words that only appear
once or twice. Yet words that are too frequent—ubiquitous, like the or good— are
unimportant. How can we balance these two conflicting constraints?

The tf-idf algorithm (the ‘-’ here is a hyphen, not a minus sign) algorithm is the
product of two terms, each term capturing one of these two intuitions:

1. The first is the term frequency (Luhn, 1957): the frequency of the word in theterm frequency

document. Normally we want to downweight the raw frequency a bit, since
a word appearing 100 times in a document doesn’t make that word 100 times
more likely to be relevant to the meaning of the document. So we generally
use the log10 of the frequency, resulting in the following definition for the term
frequency weight:

tft,d =

�
1+ log10 count(t,d) if count(t,d) > 0
0 otherwise

Thus terms which occur 10 times in a document would have a tf=2, 100 times
in a document tf=3, 1000 times tf=4, and so on.

2. The second factor is used to give a higher weight to words that occur only
in a few documents. Terms that are limited to a few documents are useful
for discriminating those documents from the rest of the collection; terms that
occur frequently across the entire collection aren’t as helpful. The document
frequency dft of a term t is simply the number of documents it occurs in. Bydocument

frequency
contrast, the collection frequency of a term is the total number of times the
word appears in the whole collection in any document. Consider in the col-
lection Shakespeare’s 37 plays the two words Romeo and action. The words
have identical collection frequencies of 113 (they both occur 113 times in all
the plays) but very different document frequencies, since Romeo only occurs
in a single play. If our goal is find documents about the romantic tribulations
of Romeo, the word Romeo should be highly weighted:

Embeddings

Vecteurs dispersés

Tf-Idf

tf-idf : synthèse

I similarité de deux mots (en prenant le cosinus)
I similarité de deux documents (en prenant le baricentre de tous

les mots du document)

Embeddings

Vecteurs dispersés

PPMI

Une alternative à tf-idf

Chercher à mesurer si un mot du contexte est particulièrement
informatif à propos du mot cible.

I Positive Pointwise Mutual Information (PPMI)

Embeddings

Vecteurs dispersés

PPMI

Pointwise Mutual Information

Pointwise mutual information:
Do events x and y co-occur more than if they were independent?

PMI between two words: (Church & Hanks 1989)
Do words x and y co-occur more than if they were independent?

PMI $%&'(, $%&'* = log*
/($%&'(, $%&'*)
/ $%&'(/($%&'*)

PMI(X,Y) = log2
P(x,y)
P(x)P(y)

Embeddings

Vecteurs dispersés

PPMI

Positive Pointwise Mutual Information
◦ PMI ranges from −∞ to +∞
◦ But the negative values are problematic

◦ Things are co-occurring less than we expect by chance
◦ Unreliable without enormous corpora

◦ Imagine w1 and w2 whose probability is each 10-6

◦ Hard to be sure p(w1,w2) is significantly different than 10-12

◦ Plus it’s not clear people are good at “unrelatedness”
◦ So we just replace negative PMI values by 0
◦ Positive PMI (PPMI) between word1 and word2:

PPMI '()*+,'()*- = max log-
5('()*+,'()*-)
5 '()*+ 5('()*-)

, 0

Embeddings

Vecteurs dispersés

PPMI

Computing PPMI on a term-context
matrix

Matrix F with W rows (words) and C columns (contexts)

fij is # of times wi occurs in context cj

60

pij =
fij

fij
j=1

C

∑
i=1

W

∑
pi* =

fij
j=1

C

∑

fij
j=1

C

∑
i=1

W

∑
p* j =

fij
i=1

W

∑

fij
j=1

C

∑
i=1

W

∑

pmiij = log2
pij

pi*p* j
ppmiij =

pmiij if pmiij > 0

0 otherwise

!
"
#

$#

Embeddings

Vecteurs dispersés

PPMI

p(w=information,c=data) =

p(w=information) =

p(c=data) =

61

p(w,context) p(w)
computer data pinch result sugar

apricot 0.00 0.00 0.05 0.00 0.05 0.11
pineapple 0.00 0.00 0.05 0.00 0.05 0.11
digital 0.11 0.05 0.00 0.05 0.00 0.21
information 0.05 0.32 0.00 0.21 0.00 0.58

p(context) 0.16 0.37 0.11 0.26 0.11

= .326/19
11/19 = .58

7/19 = .37

pij =
fij

fij
j=1

C

∑
i=1

W

∑

p(wi) =
fij

j=1

C

∑

N
p(cj) =

fij
i=1

W

∑

N

Embeddings

Vecteurs dispersés

PPMI

62

pmiij = log2
pij

pi*p* j

pmi(information,data) = log2 (

p(w,context) p(w)
computer data pinch result sugar

apricot 0.00 0.00 0.05 0.00 0.05 0.11
pineapple 0.00 0.00 0.05 0.00 0.05 0.11
digital 0.11 0.05 0.00 0.05 0.00 0.21
information 0.05 0.32 0.00 0.21 0.00 0.58

p(context) 0.16 0.37 0.11 0.26 0.11

PPMI(w,context)
computer data pinch result sugar

apricot 1 1 2.25 1 2.25
pineapple 1 1 2.25 1 2.25
digital 1.66 0.00 1 0.00 1
information 0.00 0.57 1 0.47 1

.32 / (.37*.58)) = .58
(.57 using full precision)

Embeddings

Vecteurs dispersés

PPMI

Weighting PMI
PMI is biased toward infrequent events
◦ Very rare words have very high PMI values

Two solutions:
◦ Give rare words slightly higher probabilities
◦ Use add-one smoothing (which has a similar

effect)

63

Embeddings

Vecteurs dispersés

PPMI

Weighting PMI: Giving rare
context words slightly higher
probability

Raise the context probabilities to ! = 0.75:

This helps because '() > ') for rare c
Consider two events, P(a) = .99 and P(b)=.01

'(+ = .,,.-.
.,,.-./.01.-. = .97 '(3 = .01.-.

.01.-./.01.-. = .03

64

6 CHAPTER 19 • VECTOR SEMANTICS

p(w,context) p(w)
computer data pinch result sugar p(w)

apricot 0 0 0.5 0 0.5 0.11
pineapple 0 0 0.5 0 0.5 0.11

digital 0.11 0.5 0 0.5 0 0.21
information 0.5 .32 0 0.21 0 0.58

p(context) 0.16 0.37 0.11 0.26 0.11
Figure 19.3 Replacing the counts in Fig. 17.2 with joint probabilities, showing the
marginals around the outside.

computer data pinch result sugar
apricot 0 0 2.25 0 2.25

pineapple 0 0 2.25 0 2.25
digital 1.66 0 0 0 0

information 0 0.57 0 0.47 0
Figure 19.4 The PPMI matrix showing the association between words and context words,
computed from the counts in Fig. 17.2 again showing six dimensions.

PMI has the problem of being biased toward infrequent events; very rare words
tend to have very high PMI values. One way to reduce this bias toward low frequency
events is to slightly change the computation for P(c), using a different function P�(c)
that raises contexts to the power of � (Levy et al., 2015):

PPMI�(w,c) = max(log2
P(w,c)

P(w)P�(c)
,0) (19.8)

P�(c) =
count(c)�

�
c count(c)� (19.9)

Levy et al. (2015) found that a setting of � = 0.75 improved performance of
embeddings on a wide range of tasks (drawing on a similar weighting used for skip-
grams (Mikolov et al., 2013a) and GloVe (Pennington et al., 2014)). This works
because raising the probability to � = 0.75 increases the probability assigned to rare
contexts, and hence lowers their PMI (P�(c) > P(c) when c is rare).

Another possible solution is Laplace smoothing: Before computing PMI, a small
constant k (values of 0.1-3 are common) is added to each of the counts, shrinking
(discounting) all the non-zero values. The larger the k, the more the non-zero counts
are discounted.

computer data pinch result sugar
apricot 2 2 3 2 3

pineapple 2 2 3 2 3
digital 4 3 2 3 2

information 3 8 2 6 2
Figure 19.5 Laplace (add-2) smoothing of the counts in Fig. 17.2.

19.2.1 Measuring similarity: the cosine
To define similarity between two target words v and w, we need a measure for taking
two such vectors and giving a measure of vector similarity. By far the most common
similarity metric is the cosine of the angle between the vectors. In this section we’ll
motivate and introduce this important measure.

Embeddings

Vecteurs dispersés

PPMI

Use Laplace smoothing (add �1)

66

Add#2%Smoothed%Count(w,context)
computer data pinch result sugar

apricot 2 2 3 2 3
pineapple 2 2 3 2 3
digital 4 3 2 3 2
information 3 8 2 6 2

p(w,context),[add02] p(w)
computer data pinch result sugar

apricot 0.03 0.03 0.05 0.03 0.05 0.20
pineapple 0.03 0.03 0.05 0.03 0.05 0.20
digital 0.07 0.05 0.03 0.05 0.03 0.24
information 0.05 0.14 0.03 0.10 0.03 0.36

p(context) 0.19 0.25 0.17 0.22 0.17

Embeddings

Vecteurs dispersés

PPMI

PPMI versus add-2 smoothed
PPMI

67

PPMI(w,context).[add22]
computer data pinch result sugar

apricot 0.00 0.00 0.56 0.00 0.56
pineapple 0.00 0.00 0.56 0.00 0.56
digital 0.62 0.00 0.00 0.00 0.00
information 0.00 0.58 0.00 0.37 0.00

PPMI(w,context)
computer data pinch result sugar

apricot 1 1 2.25 1 2.25
pineapple 1 1 2.25 1 2.25
digital 1.66 0.00 1 0.00 1
information 0.00 0.57 1 0.47 1

Embeddings

Vecteurs denses

Plan

Sémantique lexicale

Vecteurs dispersés

Sémantique distributionnelle : principe

Tf-Idf

PPMI

Vecteurs denses

Word2vec

Propriétés des embeddings

Embeddings

Vecteurs denses

Densité
Les vecteurs construits avec tf-idf et PPMI sont longs (entre 20k et
50k), et creux.
Les vecteurs dont nous allons parler maintenant sont courts (entre
50 et 1000 dimensions), et denses (presque pas de zéros).
Avantage des vecteurs denses :
I les vecteurs de petite taille peuvent être plus faciles à utiliser

pour l’apprentissage (moins de poids à régler)
I les vecteurs de petite taille peuvent généraliser mieux que les

vecteurs de fréquence
I ils peuvent aussi mieux représenter la synonymie :

I voiture et automobile sont des synonymes, mais s’ils sont pris

comme deux dimensions distinctes, les voisins de ces deux

mots ne sont pas considérés comme similaires

I en pratique, ils fonctionnent mieux

Embeddings

Vecteurs denses

Word2vec

Word2vec

I Première proposition vraiment à large couverture,
I très répandue encore aujourd’hui,
I rapide à entraîner,
I le code est accessible sur Internet.

I Idée : faire des prédictions plutôt que des comptages.

Embeddings

Vecteurs denses

Word2vec

Principe général

I Au lieu de compter combien de fois chaque mot w apparaît
dans le voisinage du mot « abricot »

I on entraîne un classifieur sur une tâche de prédiction binaire :
I Est-ce que w a des chances d’apparaître dans le voisinage

d’« abricot » ?

I La tâche en elle-même n’est pas le but de l’opération
I mais elle va fournir des poids appris qui vont représenter le mot

Embeddings

Vecteurs denses

Word2vec

Avancée théorique

Avec cette méthode, on utilise du texte courant comme
données d’entraînement supervisées implicitement
I Tout mot s dans le voisinage de « abricot »

I fonctionne comme une réponse correcte “gold” à la question :

I Est-ce que w a des chances d’apparaître dans le voisinage

d’« abricot » ?

I Aucune supervision manuelle n’est requise
I L’idée vient du domaine de la modélisation de langage

neuronale
I Bengio et al (2003)

I Collobert et (2011)

Embeddings

Vecteurs denses

Word2vec

Les différents algorithmes

Deux grands types d’algorithmes dans l’article de Mikolov :
I Continuous Bag of Words (CBOW)
I Skip-gram

On présente dans ce qui suit l’architecture SGNS (skip-gram with
negative sampling)

Embeddings

Vecteurs denses

Word2vec

Algorithme skip-gram

1. On considère le mot cible et le voisinage comme des exemples
positifs

2. On tire au hasard d’autres mots du lexique pour obtenir des
exemples négatifs

3. On utilise la régression logistique pour entraîner un classifieur
pour distinguer ces deux cas

4. Les poids appris sont utilisés comme plongement.

Embeddings

Vecteurs denses

Word2vec

Données d’entraînement

Phrase d’entraînement :
... lemon, tablespoon of apricot jam a pinch...

c1 c2 target c3 c4

Objectif du skip-gram : étant donné un tuple (t,c) (target,
context-word)
I (apricot, jam)
I (apricot, aardvark)

! retourner la probabilité que c soit un vrai mot de contexte.
I P(+|t, c)
I P(�|t, c) = 1 � P(+|t, c)

Embeddings

Vecteurs denses

Word2vec

Calcul de la probabilité

Intuition :
I Les mots ont des chances d’apparaître près de mots similaires
I On modélise la similarité avec le produit scalaire
I Similarity(t,c) / t · c

Problème :
I Le produit scalaire n’est pas une probabilité !

(le cosinus non plus)

Embeddings

Vecteurs denses

Word2vec

Transformation d’un produit scalaire en probabilité

La courbe sigmoïde évolue entre 0 et 1 :

�(x) =
1

1 + e�x

Turning dot product into a
probability
The sigmoid lies between 0 and 1:

16 CHAPTER 6 • VECTOR SEMANTICS

6.7.1 The classifier
Let’s start by thinking about the classification task, and then turn to how to train.
Imagine a sentence like the following, with a target word apricot and assume we’re
using a window of ±2 context words:

... lemon, a [tablespoon of apricot jam, a] pinch ...

c1 c2 t c3 c4

Our goal is to train a classifier such that, given a tuple (t,c) of a target word
t paired with a candidate context word c (for example (apricot, jam), or perhaps
(apricot, aardvark) it will return the probability that c is a real context word (true
for jam, false for aardvark):

P(+|t,c) (6.15)

The probability that word c is not a real context word for t is just 1 minus
Eq. 6.15:

P(�|t,c) = 1�P(+|t,c) (6.16)

How does the classifier compute the probability P? The intuition of the skip-
gram model is to base this probability on similarity: a word is likely to occur near
the target if its embedding is similar to the target embedding. How can we compute
similarity between embeddings? Recall that two vectors are similar if they have a
high dot product (cosine, the most popular similarity metric, is just a normalized dot
product). In other words:

Similarity(t,c) � t · c (6.17)

Of course, the dot product t · c is not a probability, it’s just a number ranging
from 0 to �. (Recall, for that matter, that cosine isn’t a probability either). To turn
the dot product into a probability, we’ll use the logistic or sigmoid function �(x),
the fundamental core of logistic regression:

�(x) =
1

1+ e�x (6.18)

The probability that word c is a real context word for target word t is thus com-
puted as:

P(+|t,c) =
1

1+ e�t·c (6.19)

The sigmoid function just returns a number between 0 and 1, so to make it a
probability we’ll need to make sure that the total probability of the two possible
events (c being a context word, and c not being a context word) sum to 1.

The probability that word c is not a real context word for t is thus:

P(�|t,c) = 1�P(+|t,c)

=
e�t·c

1+ e�t·c (6.20)

Embeddings

Vecteurs denses

Word2vec

Transformation d’un produit scalaire en probabilité (suite)

P(+|t, c) = 1
1 + e�t·c

P(�|t, c) = 1 � P(+|t, c) = e�t·c

1 + e�t·c

Pour les mots de contexte
(sous l’hypothèse qu’ils sont indépendants)

P(+|t, c1:k) =
kY

i=1

1
1 + e�t·ci

logP(+|t, c1:k) =
kX

i=1

log
1

1 + e�t·ci

Embeddings

Vecteurs denses

Word2vec

Exemples positifs et négatifs

... lemon, tablespoon of apricot jam a pinch...
c1 c2 target c3 c4

positifs
t c

apricot tablespoon

apricot of

apricot jam

apricot a

négatifs
t c t c

apricot aardvark apricot twelve

apricot puddle apricot hello

apricot where apricot dear

apricot coaxial apricot forever

Pour chaque exemple positif, on crée k exemples négatifs, en utilisant des mots au
hasard (6= t)

Embeddings

Vecteurs denses

Word2vec

Choix des mots « négatifs (noise words) »

Le tirage au sort pourrait se faire selon la fréquence des
unigrammes (le mot le serait choisi avec une probabilité de
count(0le0)

N), mais on préfère utiliser une fréquence pondérée P↵(w) :

P↵(w) =
count(w)↵P
wj count(w j)↵

On choisit fréquemment ↵ = 3
4 .

Utiliser une pondération augmente la probabilité des mots rares.

Embeddings

Vecteurs denses

Word2vec

Mise en place
On démarre avec chaque mot représenté par un vecteur d’une taille
donnée (p.ex. 300), initialisé au hasard.
On a donc au départ 300⇥V paramètres aléatoires
Sur la totalité du jeu d’entraînement, on va chercher à ajuster les
vecteurs de mots de telle sorte que
I la similarité des paires (t,c) avec c dans les exemples positifs

soit maximale
I la similarité des paires (t,c) avec c dans les exemples négatifs

soit minimale
On veut donc maximiser :

X

(t,c)2+

logP(+|t, c) +
X

(t,c)2�

logP(�|t, c)

Embeddings

Vecteurs denses

Word2vec

Si on choisit un mot cible t

L(✓) = logP(+|t, c) +
Pk

i=1 logP(�|t, ni)

= log �(t · c) +
Pk

i=1 log �(�ni · t)

= log 1
1+e�c·t +

Pk
i=1 log

1
1+eni ·t

Embeddings

Vecteurs denses

Word2vec

Entraînement

On réalise l’entraînement avec une descente de gradient.

1
.
k
.
n
.
V

1.2…….j………V

1
.
.
.
d

W
C

1. .. … d

increase
similarity(apricot , jam)

wj . ck

jam

apricot

aardvark

decrease
similarity(apricot , aardvark)

wj . cn

“…apricot jam…”
neighbor word

random noise
word

En fait, cette méthode apprend en même temps deux embeddings
pour chaque mot.

Embeddings

Vecteurs denses

Word2vec

Summary: How to learn word2vec
(skip-gram) embeddings
Start with V random 300-dimensional vectors as
initial embeddings
Use logistic regression, the second most basic
classifier used in machine learning after naïve
bayes
◦ Take a corpus and take pairs of words that co-occur as

positive examples
◦ Take pairs of words that don't co-occur as negative

examples
◦ Train the classifier to distinguish these by slowly adjusting

all the embeddings to improve the classifier performance
◦ Throw away the classifier code and keep the embeddings.

Embeddings

Vecteurs denses

Propriétés des embeddings

Summary: How to learn word2vec
(skip-gram) embeddings
Start with V random 300-dimensional vectors as
initial embeddings
Use logistic regression, the second most basic
classifier used in machine learning after naïve
bayes
◦ Take a corpus and take pairs of words that co-occur as

positive examples
◦ Take pairs of words that don't co-occur as negative

examples
◦ Train the classifier to distinguish these by slowly adjusting

all the embeddings to improve the classifier performance
◦ Throw away the classifier code and keep the embeddings.

Embeddings

Vecteurs denses

Propriétés des embeddings

Evaluating embeddings
Compare to human scores on word
similarity-type tasks:
• WordSim-353 (Finkelstein et al., 2002)

• SimLex-999 (Hill et al., 2015)

• Stanford Contextual Word Similarity (SCWS) dataset
(Huang et al., 2012)

• TOEFL dataset: Levied is closest in meaning to: imposed,
believed, requested, correlated

Embeddings

Vecteurs denses

Propriétés des embeddings

Properties of embeddings

29

C = ±2 The nearest words to Hogwarts:
◦ Sunnydale
◦ Evernight

C = ±5 The nearest words to Hogwarts:
◦Dumbledore
◦Malfoy
◦ halfblood

Similarity depends on window size C

Embeddings

Vecteurs denses

Propriétés des embeddings

Analogy: Embeddings capture
relational meaning!

vector(‘king’) - vector(‘man’) + vector(‘woman’) ≈ vector(‘queen’)

vector(‘Paris’) - vector(‘France’) + vector(‘Italy’) ≈ vector(‘Rome’)

30

Embeddings

Vecteurs denses

Propriétés des embeddings

Embeddings

Vecteurs denses

Propriétés des embeddings

Embeddings

Vecteurs denses

Propriétés des embeddings

Embeddings can help study
word history!
Train embeddings on old books to study
changes in word meaning!!

Will Hamilton

Embeddings

Vecteurs denses

Propriétés des embeddings

Diachronic word embeddings for
studying language change!

3
4

1900 1950 2000

vs.

Word vectors for 1920 Word vectors 1990

“dog” 1920 word vector

“dog” 1990 word vector

Embeddings

Vecteurs denses

Propriétés des embeddings

Visualizing changes

Project 300 dimensions down into 2

~30 million books, 1850-1990, Google Books data

Embeddings

Vecteurs denses

Propriétés des embeddings

36

The evolution of sentiment words
Negative words change faster than positive words

Embeddings

Vecteurs denses

Propriétés des embeddings

Embeddings and bias

Embeddings

Vecteurs denses

Propriétés des embeddings

Embeddings reflect cultural bias

Ask “Paris : France :: Tokyo : x”
◦ x = Japan

Ask “father : doctor :: mother : x”
◦ x = nurse

Ask “man : computer programmer :: woman : x”
◦ x = homemaker

Bolukbasi, Tolga, Kai-Wei Chang, James Y. Zou, Venkatesh Saligrama, and
Adam T. Kalai. "Man is to computer programmer as woman is to
homemaker? debiasing word embeddings." In Advances in Neural
Information Processing Systems, pp. 4349-4357. 2016.

Embeddings

Vecteurs denses

Propriétés des embeddings

Embeddings reflect cultural bias

Implicit Association test (Greenwald et al 1998): How associated are
◦ concepts (flowers, insects) & attributes (pleasantness, unpleasantness)?
◦ Studied by measuring timing latencies for categorization.

Psychological findings on US participants:
◦ African-American names are associated with unpleasant words (more than European-

American names)
◦ Male names associated more with math, female names with arts
◦ Old people's names with unpleasant words, young people with pleasant words.

Caliskan et al. replication with embeddings:
◦ African-American names (Leroy, Shaniqua) had a higher GloVe cosine

with unpleasant words (abuse, stink, ugly)
◦ European American names (Brad, Greg, Courtney) had a higher cosine

with pleasant words (love, peace, miracle)

Embeddings reflect and replicate all sorts of pernicious biases.

Caliskan, Aylin, Joanna J. Bruson and Arvind Narayanan. 2017. Semantics derived automatically from
language corpora contain human-like biases. Science 356:6334, 183-186.

Embeddings

Vecteurs denses

Propriétés des embeddings

Directions
Debiasing algorithms for embeddings
◦ Bolukbasi, Tolga, Chang, Kai-Wei, Zou, James Y.,

Saligrama, Venkatesh, and Kalai, Adam T. (2016). Man is
to computer programmer as woman is to homemaker?
debiasing word embeddings. In Advances in Neural Infor-
mation Processing Systems, pp. 4349–4357.

Use embeddings as a historical tool to study bias

Embeddings

Vecteurs denses

Propriétés des embeddings

Embeddings as a window onto history

Use the Hamilton historical embeddings
The cosine similarity of embeddings for decade X
for occupations (like teacher) to male vs female
names
◦ Is correlated with the actual percentage of women

teachers in decade X

Garg, Nikhil, Schiebinger, Londa, Jurafsky, Dan, and Zou, James (2018). Word embeddings quantify 100 years of gender
and ethnic stereotypes. Proceedings of the National Academy of Sciences, 115(16), E3635–E3644

Embeddings

Vecteurs denses

Propriétés des embeddings

History of biased framings of women

Embeddings for competence adjectives are
biased toward men
◦ Smart, wise, brilliant, intelligent, resourceful,

thoughtful, logical, etc.

This bias is slowly decreasing

Garg, Nikhil, Schiebinger, Londa, Jurafsky, Dan, and Zou, James (2018). Word embeddings quantify 100 years of gender
and ethnic stereotypes. Proceedings of the National Academy of Sciences, 115(16), E3635–E3644

Embeddings

Vecteurs denses

Propriétés des embeddings

Embeddings reflect ethnic
stereotypes over time

• Princeton trilogy experiments
• Attitudes toward ethnic groups (1933,

1951, 1969) scores for adjectives
• industrious, superstitious, nationalistic, etc

• Cosine of Chinese name embeddings with
those adjective embeddings correlates with
human ratings.

Garg, Nikhil, Schiebinger, Londa, Jurafsky, Dan, and Zou, James (2018). Word embeddings quantify 100 years of gender
and ethnic stereotypes. Proceedings of the National Academy of Sciences, 115(16), E3635–E3644

Embeddings

Vecteurs denses

Propriétés des embeddings

Change in linguistic framing
1910-1990

C
O

M
P

U
T
E
R

S
C

IE
N

C
E
S

S
O

C
IA

L
S

C
IE

N
C

E
S

Table 3. Top Asian (vs. White) adjectives in 1910, 1950, and 1990
by relative norm difference in the COHA embedding

1910 1950 1990

Irresponsible Disorganized Inhibited
Envious Outrageous Passive
Barbaric Pompous Dissolute
Aggressive Unstable Haughty
Transparent Effeminate Complacent
Monstrous Unprincipled Forceful
Hateful Venomous Fixed
Cruel Disobedient Active
Greedy Predatory Sensitive
Bizarre Boisterous Hearty

qualitatively through the results in the snapshot analysis for gen-
der, which replicates prior work, and quantitatively as the metrics
correlate highly with one another, as shown in SI Appendix,
section A.5.

Furthermore, we primarily use linear models to fit the relation-
ship between embedding bias and various external metrics; how-
ever, the true relationships may be nonlinear and warrant further
study. This concern is especially salient when studying ethnic
stereotypes over time in the United States, as immigration dras-
tically shifts the size of each group as a percentage of the popu-
lation, which may interact with stereotypes and occupation per-
centages. However, the models are sufficient to show consistency
in the relationships between embedding bias and external metrics
across datasets over time. Further, the results do not qualitatively
change when, for example, population logit proportion instead
of raw percentage difference is used, as in ref. 44; we reproduce
our primary figures with such a transformation in SI Appendix,
section A.6.

Another potential concern may be the dependency of our
results on the specific word lists used and that the recall of
our methods in capturing human biases may not be adequate.
We take extensive care to reproduce similar results with other
word lists and types of measurements to demonstrate recall. For
example, in SI Appendix, section B.1, we repeat the static occu-
pation analysis using only professional occupations and repro-
duce an identical figure to Fig. 1 in SI Appendix, section B.1.
Furthermore, the plots themselves contain bootstrapped confi-
dence intervals; i.e., the coefficients for random subsets of the
occupations/adjectives and the intervals are tight. Similarly, for
adjectives, we use two different lists: one list from refs. 6 and 7
for which we have labeled stereotype scores and then a larger
one for the rest of the analysis where such scores are not needed.
We note that we do not tune either the embeddings or the word
lists, instead opting for the largest/most general publicly avail-
able data. For reproducibility, we share our code and all word
lists in a repository. That our methods replicate across many dif-
ferent embeddings and types of biases measured suggests their
generalizability.

A common challenge in historical analysis is that the written
text in, say 1910, may not completely reflect the popular social
attitude of that time. This is an important caveat to consider in
interpreting the results of the embeddings trained on these ear-
lier text corpora. The fact that the embedding bias for gender
and ethnic groups does track with census proportion is a positive
control that the embedding is still capturing meaningful patterns
despite possible limitations in the training text. Even this con-
trol may be limited in that the census proportion does not fully
capture gender or ethnic associations, even in the present day.
However, the written text does serve as a window into the atti-
tudes of the day as expressed in popular culture, and this work
allows for a more systematic study of such text.

Another limitation of our current approach is that all of the
embeddings used are fully “black box,” where the dimensions
have no inherent meaning. To provide a more causal explana-
tion of how the stereotypes appear in language, and to under-
stand how they function, future work can leverage more recent
embedding models in which certain dimensions are designed to
capture various aspects of language, such as the polarity of a
word or its parts of speech (45). Similarly, structural proper-
ties of words—beyond their census information or human-rated
stereotypes—can be studied in the context of these dimensions.
One can also leverage recent Bayesian embeddings models and
train more fine-grained embeddings over time, rather than a sep-
arate embedding per decade as done in this work (46, 47). These
approaches can be used in future work.

We view the main contribution of our work as introducing
and validating a framework for exploring the temporal dynam-
ics of stereotypes through the lens of word embeddings. Our
framework enables the computation of simple but quantitative
measures of bias as well as easy visualizations. It is important to
note that our goal in Quantifying Gender Stereotypes and Quanti-

fying Ethnic Stereotypes is quantitative exploratory analysis rather
than pinning down specific causal models of how certain stereo-
types arise or develop, although the analysis in Occupational

Stereotypes Beyond Census Data suggests that common language
is more biased than one would expect based on external, objec-
tive metrics. We believe our approach sharpens the analysis of
large cultural shifts in US history; e.g., the women’s movement
of the 1960s correlates with a sharp shift in the encoding matrix
(Fig. 4) as well as changes in the biases associated with spe-
cific occupations and gender-biased adjectives (e.g., hysterical vs.
emotional).

In standard quantitative social science, machine learning is
used as a tool to analyze data. Our work shows how the artifacts
of machine learning (word embeddings here) can themselves
be interesting objects of sociological analysis. We believe this
paradigm shift can lead to many fruitful studies.

Materials and Methods

In this section we describe the datasets, embeddings, and word lists used,
as well as how bias is quantified. More detail, including descriptions of
additional embeddings and the full word lists, are in SI Appendix, section
A. All of our data and code are available on GitHub (https://github.com/
nikhgarg/EmbeddingDynamicStereotypes), and we link to external data
sources as appropriate.

Embeddings. This work uses several pretrained word embeddings publicly
available online; refer to the respective sources for in-depth discussion of
their training parameters. These embeddings are among the most com-
monly used English embeddings, vary in the datasets on which they were

Fig. 6. Asian bias score over time for words related to outsiders in COHA
data. The shaded region is the bootstrap SE interval.

Garg et al. PNAS Latest Articles | 7 of 10

Change in association of Chinese names with adjectives

framed as "othering" (barbaric, monstrous, bizarre)

Garg, Nikhil, Schiebinger, Londa, Jurafsky, Dan, and Zou, James (2018). Word embeddings quantify 100 years of gender

and ethnic stereotypes. Proceedings of the National Academy of Sciences, 115(16), E3635–E3644

Embeddings

Vecteurs denses

Propriétés des embeddings

Changes in framing:
adjectives associated with Chinese

C
O

M
P

U
T
E
R

S
C

IE
N

C
E
S

S
O

C
IA

L
S

C
IE

N
C

E
S

Table 3. Top Asian (vs. White) adjectives in 1910, 1950, and 1990
by relative norm difference in the COHA embedding

1910 1950 1990

Irresponsible Disorganized Inhibited
Envious Outrageous Passive
Barbaric Pompous Dissolute
Aggressive Unstable Haughty
Transparent Effeminate Complacent
Monstrous Unprincipled Forceful
Hateful Venomous Fixed
Cruel Disobedient Active
Greedy Predatory Sensitive
Bizarre Boisterous Hearty

qualitatively through the results in the snapshot analysis for gen-
der, which replicates prior work, and quantitatively as the metrics
correlate highly with one another, as shown in SI Appendix,
section A.5.

Furthermore, we primarily use linear models to fit the relation-
ship between embedding bias and various external metrics; how-
ever, the true relationships may be nonlinear and warrant further
study. This concern is especially salient when studying ethnic
stereotypes over time in the United States, as immigration dras-
tically shifts the size of each group as a percentage of the popu-
lation, which may interact with stereotypes and occupation per-
centages. However, the models are sufficient to show consistency
in the relationships between embedding bias and external metrics
across datasets over time. Further, the results do not qualitatively
change when, for example, population logit proportion instead
of raw percentage difference is used, as in ref. 44; we reproduce
our primary figures with such a transformation in SI Appendix,
section A.6.

Another potential concern may be the dependency of our
results on the specific word lists used and that the recall of
our methods in capturing human biases may not be adequate.
We take extensive care to reproduce similar results with other
word lists and types of measurements to demonstrate recall. For
example, in SI Appendix, section B.1, we repeat the static occu-
pation analysis using only professional occupations and repro-
duce an identical figure to Fig. 1 in SI Appendix, section B.1.
Furthermore, the plots themselves contain bootstrapped confi-
dence intervals; i.e., the coefficients for random subsets of the
occupations/adjectives and the intervals are tight. Similarly, for
adjectives, we use two different lists: one list from refs. 6 and 7
for which we have labeled stereotype scores and then a larger
one for the rest of the analysis where such scores are not needed.
We note that we do not tune either the embeddings or the word
lists, instead opting for the largest/most general publicly avail-
able data. For reproducibility, we share our code and all word
lists in a repository. That our methods replicate across many dif-
ferent embeddings and types of biases measured suggests their
generalizability.

A common challenge in historical analysis is that the written
text in, say 1910, may not completely reflect the popular social
attitude of that time. This is an important caveat to consider in
interpreting the results of the embeddings trained on these ear-
lier text corpora. The fact that the embedding bias for gender
and ethnic groups does track with census proportion is a positive
control that the embedding is still capturing meaningful patterns
despite possible limitations in the training text. Even this con-
trol may be limited in that the census proportion does not fully
capture gender or ethnic associations, even in the present day.
However, the written text does serve as a window into the atti-
tudes of the day as expressed in popular culture, and this work
allows for a more systematic study of such text.

Another limitation of our current approach is that all of the
embeddings used are fully “black box,” where the dimensions
have no inherent meaning. To provide a more causal explana-
tion of how the stereotypes appear in language, and to under-
stand how they function, future work can leverage more recent
embedding models in which certain dimensions are designed to
capture various aspects of language, such as the polarity of a
word or its parts of speech (45). Similarly, structural proper-
ties of words—beyond their census information or human-rated
stereotypes—can be studied in the context of these dimensions.
One can also leverage recent Bayesian embeddings models and
train more fine-grained embeddings over time, rather than a sep-
arate embedding per decade as done in this work (46, 47). These
approaches can be used in future work.

We view the main contribution of our work as introducing
and validating a framework for exploring the temporal dynam-
ics of stereotypes through the lens of word embeddings. Our
framework enables the computation of simple but quantitative
measures of bias as well as easy visualizations. It is important to
note that our goal in Quantifying Gender Stereotypes and Quanti-

fying Ethnic Stereotypes is quantitative exploratory analysis rather
than pinning down specific causal models of how certain stereo-
types arise or develop, although the analysis in Occupational

Stereotypes Beyond Census Data suggests that common language
is more biased than one would expect based on external, objec-
tive metrics. We believe our approach sharpens the analysis of
large cultural shifts in US history; e.g., the women’s movement
of the 1960s correlates with a sharp shift in the encoding matrix
(Fig. 4) as well as changes in the biases associated with spe-
cific occupations and gender-biased adjectives (e.g., hysterical vs.
emotional).

In standard quantitative social science, machine learning is
used as a tool to analyze data. Our work shows how the artifacts
of machine learning (word embeddings here) can themselves
be interesting objects of sociological analysis. We believe this
paradigm shift can lead to many fruitful studies.

Materials and Methods

In this section we describe the datasets, embeddings, and word lists used,
as well as how bias is quantified. More detail, including descriptions of
additional embeddings and the full word lists, are in SI Appendix, section
A. All of our data and code are available on GitHub (https://github.com/
nikhgarg/EmbeddingDynamicStereotypes), and we link to external data
sources as appropriate.

Embeddings. This work uses several pretrained word embeddings publicly
available online; refer to the respective sources for in-depth discussion of
their training parameters. These embeddings are among the most com-
monly used English embeddings, vary in the datasets on which they were

Fig. 6. Asian bias score over time for words related to outsiders in COHA
data. The shaded region is the bootstrap SE interval.

Garg et al. PNAS Latest Articles | 7 of 10

Garg, Nikhil, Schiebinger, Londa, Jurafsky, Dan, and Zou, James (2018). Word embeddings quantify 100 years of gender
and ethnic stereotypes. Proceedings of the National Academy of Sciences, 115(16), E3635–E3644

Embeddings

Vecteurs denses

Propriétés des embeddings

Conclusion
Concepts or word senses
◦ Have a complex many-to-many association with words

(homonymy, multiple senses)
◦ Have relations with each other

◦ Synonymy, Antonymy, Superordinate
◦ But are hard to define formally (necessary & sufficient

conditions)

Embeddings = vector models of meaning
◦ More fine-grained than just a string or index
◦ Especially good at modeling similarity/analogy

◦ Just download them and use cosines!!
◦ Can use sparse models (tf-idf) or dense models (word2vec,

GLoVE)
◦ Useful in practice but know they encode cultural stereotypes

Embeddings

Vecteurs denses

Propriétés des embeddings

References

Jurafsky, Daniel, & Martin, James H. 2019. Speech and Language Processing : An Introduction to

Natural Language Processing, Speech Recognition, and Computational Linguistics. Prentice-Hall.

drafts of August 29, 2019.

	Sémantique lexicale
	Vecteurs dispersés
	Vecteurs denses
	Références

