Formal Languages Formal Grammars Regular Languages Formal complexity of Natural Languages References

Formal Languages applied to Linguistics

Pascal Amsili

Laboratoire Lattice, Université Sorbonne Nouvelle

Cogmaster, september 2019

Overview

- Formal Languages
- Pormal Grammars
- Regular Languages
 - Definition
 - Automata
 - Properties
- 4 Formal complexity of Natural Languages

Definition

3 possible definitions

- a regular language can be generated by a regular grammar
- 2 a regular language can be defined by rational expressions
- 3 a regular language can be recognized by a finite automaton

Def. 15 (Rational Language)

A rational language on Σ is a subset of Σ^* inductively defined thus:

- \emptyset and $\{\varepsilon\}$ are rational languages ;
- for all $a \in X$, the singleton $\{a\}$ is a rational language;
- for all g and h rational, the sets $g \cup h$, g.h and g^* are rational languages.

Overview

- Formal Languages
- 2 Formal Grammars
- Regular Languages
 - Definition
 - Automata
 - Properties
- Formal complexity of Natural Languages

Metaphoric definition

Formal definition

Def. 16 (Finite deterministic automaton (FDA))

A finite state deterministic automaton ${\cal A}$ is defined by :

$$\mathcal{A} = \langle Q, \Sigma, q_0, F, \delta \rangle$$

Q is a finite set of states

 Σ is an alphabet

 q_0 is a distinguished state, the initial state,

F is a subset of Q, whose members are called final/terminal states

 δ is a mapping **fonction** from $Q \times \Sigma$ to Q. Notation $\delta(q, a) = r$.

Example

Let us consider the (finite) language $\{aa, ab, abb, acba, accb\}$. The following automaton recognizes this language: $\langle Q, \Sigma, q_0, F, \delta \rangle$, avec $Q = \{1, 2, 3, 4, 5, 6, 7\}$, $\Sigma = \{a, b, c\}$, $q_0 = 1$, $F = \{3, 4\}$, and δ is thus defined:

	а	b	С
$\rightarrow 1$	2		
2	3	4	5
← 3			
← 4		3	
5		6	7
6	3		
7		3	

Recognition

Recognition is defined as the existence of a sequence of states defined in the following way. Such a sequence is called a path in the automaton.

Def. 17 (Recognition)

A word $a_1a_2...a_n$ is **recognized/accepted** by an automaton iff there exists a sequence $k_0, k_1, ..., k_n$ of states such that:

$$k_0 = q_0$$

$$k_n \in F$$

$$\forall i \in [1, n], \ \delta(k_{i-1}, a_i) = k_i$$

Example

Exercices

Let $\Sigma = \{a, b, c\}$. Give deterministic finite state automata that accept the following languages:

- 1 The set of words with an even length.
- 2 The set of words where the number of occurrences of *b* is divisible by 3.
- 3 The set of words ending with a b.
- The set of words not ending with a b.
- **5** The set of words non empty not ending with a b.
- **1** The set of words comprising at least a *b*.
- The set of words comprising at most a b.
- **3** The set of words comprising exactly one b.

Answers

