CALCULATING COHEN'S KAPPA

A MEASURE OF INTER-RATER RELIABILITY

FOR QUALITATIVE RESEARCH INVOLVING NOMINAL CODING

WHAT IS COHEN'S KAPPA?

COHEN'S KAPPA IS A STATISTICAL MEASURE CREATED BY JACOB COHEN IN 1960 TO BE A MORE ACCURATE MEASURE OF RELIABILITY BETWEEN TWO RATERS MAKING DECISONS ABOUT HOW A PARTICULAR UNIT OF ANALYSIS SHOULD BE CATEGORIZED.

KAPPA MEASURES NOT ONLY THE % OF AGREEMENT BETWEEN TWO RATERS, IT ALSO CALCULATES THE DEGREE TO WHICH AGREEMENT CAN BE ATTRIBUTED TO CHANCE.

JACOB COHEN, A COEFFICIENT OF AGREEMENT FOR NOMINAL SCALES, EDUCATIONAL AND PSYCHOLOGICAL MEASUREMENT 20: 37–46, 1960.

THE EQUATION FOR K

$$\mathcal{K} = \Pr(a) - \Pr(e)$$

N-Pr(e)

PR(A) = SIMPLE AGREEMENT AMONG RATERS

N = TOTAL NUMBER OF RATED ITEMS, ALSO CALLED "CASES"

THE EQUATION FOR K

THE FANCY "K" STANDS FOR KAPPA

$$\mathcal{K} = \Pr(a) - \Pr(e)$$

N-Pr(e)

PR(A) = SIMPLE AGREEMENT AMONG RATERS

N = TOTAL NUMBER OF RATED ITEMS, ALSO CALLED "CASES"

THE EQUATION FOR K

THE FANCY "K" STANDS FOR KAPPA

$$\rightarrow \mathcal{K} = \Pr(a) - \Pr(e)$$

N-Pr(e)

PR(A) = SIMPLE AGREEMENT AMONG RATERS

N = TOTAL NUMBER OF RATED ITEMS, ALSO CALLED "CASES"

CALCULATING **K** BY HAND USING A CONTINGENCY TABLE

RATER $1 \longrightarrow$

R		A	B	С
R A T E	A			
E R 2	B			
↓	C			

THE SIZE OF THE TABLE IS DETERMINED BY HOW MANY CODING CATEGORIES YOU HAVE

THIS EXAMPLE ASSUMES THAT YOUR UNITS CAN BE SORTED INTO THREE CATEGORIES, HENCE A 3X3 GRID

CALCULATING **K** BY HAND USING A CONTINGENCY TABLE

	RATER	1>	
	A	B	С
A	# of agreements on A	disagreement	disagreement
B	disagreement	# of agreements on B	disagreement
С	disagreement	disagreement	# of agreements on C

R

A

T

E

R

2

THE DIAGONAL HIGHLIGHTED HERE REPRESENTS AGREEMENT (WHERE THE TWO RATERS BOTH MARK THE SAME THING)

DATA: RATING BLOG COMMENTS

UNTIL I HAD A SAMPLE OF 10 COMMENTS

I ASKED REW COLLEAGUES TO RATE EACH COMMENT: "PLEASE CATEGORIZE EACH USING THE FOLLOWING CHOICES: RELEVANT, SPAM, OR OTHER."

WE CAN NOW CALCULATE AGREEMENT BETWEEN ANY TWO RATERS

DATA: RATERS 1-5

Item #	I	2	3	4	5	6	7	8	9	10
Rater I	R	R	R	R	R	R	R	R	R	S
Rater 2	S	R	R	0	R	R	R	R	0	S
Rater 3	R	R	R	0	R	R	0	0	R	S
Rater 4	R	R	R	R	R	R	R	R	R	S
Rater 5	S	R	R	0	R	0	0	R	R	S

CALCULATING K FOR RATERS I & 2

RATER $1 \longrightarrow$

R

A

T

E

R

2

R S 0 ADD ROWSE COLUMNS 6 6 0 0 R (Item #2,3, 4-8) SINCE WE HAVE 10 ITEMS, S 2 0 THE (ltem #1) (Item #10) TOTALS SHOULD ADDUP 2 2 0 0 0 TO 10 FOR (Item #4 & 9) EACH 9 0 10

CALCULATING K COMPUTING SIMPLE AGREEMENT

RATER $1 \longrightarrow$ R S 0 6 0 0 R (Item #2,3, 4-8) S 0 (ltem #1) (Item #10) 2 0 0 0 (Item #4 & 9)

R

A

T

E

R

2

ADD VALUES OF DIAGONAL CELLS § DIVIDE BY TOTAL NUMBER OF CASES TO COMPUTE SIMPLE AGREEMENT OR "PR(A)"

(6+1)/10

 $\mathcal{K} = \mathbf{7} - \Pr(\mathbf{e})$

10 -Pr(e)

WE ALSO SUBSTITUTE 10 AS THE VALUE OF N

RATERS 1 § 2 AGREED ON 70% OF THE CASES. BUT HOW MUCH OF THAT AGREEMENT WAS BY CHANCE? PR(A) = SIMPLEAGREEMENT AMONG RATERS

WE CAN NOW ENTER THE VALUE OF PR(A)

 $\mathcal{K} = \mathbf{7} - \Pr(\mathbf{e})$

10 -Pr(e)

PR(A) = SIMPLE AGREEMENT AMONG RATERS

WE ALSO SUBSTITUTE 10 AS THE VALUE OF N

RATERS 1 & 2 AGREED ON 70% OF THE CASES. BUT HOW MUCH OF THAT AGREEMENT WAS BY CHANCE?

WE CAN NOW ENTER THE VALUE OF PR(A)

$$\rightarrow \mathcal{K} = 7 - \Pr(e)$$

10 -Pr(e)

PR(A) = SIMPLE AGREEMENT AMONG RATERS

WE ALSO SUBSTITUTE 10 AS THE VALUE OF N

RATERS 1 § 2 AGREED ON 70% OF THE CASES. BUT HOW MUCH OF THAT AGREEMENT WAS BY CHANCE?

CALCULATING \mathcal{K} EXPECTED FREQUENCY OF CHANCE AGREEMENT

		RAT	ER 1 —	FOR EACH					
R		R	S	0	DIAGONAL				
					CELL, WE				
A T	R	6 (5.4)	0	0	COMPUTE				
T					EXPECTED				
E	S			0	FREQUENCY OF				
R		(ltem #1)	(.2)		CHANCE (EF)				
2	0	2 (ltem #4 & 9)	0	0 (0)	$\frac{\text{ROW TOTAL X COL TOTAL}}{\text{EF}} = \text{TOTAL # OF CASES}$				

EF FOR "RELEVANT" = (6*9)/10 = 5.4

CALCULATING \mathcal{K} EXPECTED FREQUENCY OF CHANCE AGREEMENT

		RAT			
R		R	S	0	ADD ALL
					VALUES OF (EF)
A	R	6 (5.4)	0	0	TOGET
T					"PR(E"
E	S	I		0	PR(E) =
R		(ltem #1)	(.2)		5.4 + .2 + 0 =
2		2		0	5.6
1	0	(ltem #4 & 9)	0	(0)	

K = 7 - 5.6

10 - 5.6

PR(A) = SIMPLE AGREEMENT AMONG RATERS

K = .3182

THIS IS FAR BELOW THE ACCEPTABLE LEVEL OF AGREEMENT, WHICH SHOULD BE AT LEAST . 70

WE CAN NOW ENTER THE VALUE OF PR(E) & COMPUTE KAPPA

K = 7 - 5.6 PR(A) = SIMPLEAGREEMENT AMONG 10 - 5.6RATERS

K = .3182

THIS IS FAR BELOW THE ACCEPTABLE LEVEL OF AGREEMENT, WHICH SHOULD BE AT LEAST . 70

WE CAN NOW ENTER THE VALUE OF PR(E)§ COMPUTE KAPPA

K = 7 - 5.6= 7 - 5.6= 7 - 5.6= 7 - 5.6= 7 - 5.6= 7 - 5.6= 7 - 5.6= 7 - 5.6= 7 - 5.6= 8 MPLEAGREEMENT AMONG RATERS

K = .3182

THIS IS FAR BELOW THE ACCEPTABLE LEVEL OF AGREEMENT, WHICH SHOULD BE AT LEAST . 70

DATA: RATERS 1& 2

$\mathcal{K} = .3182$ How can we improve?

ltem #		2	3	4	5	6	7	8	9	10
Rater I	R	R	R	R	R	R	R	R	R	S
Rater 2	S	R	R	0	R	R	R	R	0	S

LOOK FOR THE PATTERN IN DISAGREEMENTS CAN SOMETHING ABOUT THE CODING SCHEME BE CLARIFIED?
TOTAL # OF CASES IS LOW, COULD BE ALLOWING A FEW STICKY CASES TO DISPROPORTIONALLY INFLUENCE AGREEMENT

DATA: RATERS 1-5

Item #		2	3	4	5	6	7	8	9	10
Rater I	R	R	R	R	R	R	R	R	R	S
Rater 2	S	R	R	0	R	R	R	R	0	S
Rater 3	R	R	R	0	R	R	0	0	R	S
Rater 4	R	R	R	R	R	R	R	R	R	S
Rater 5	S	R	R	0	R	0	0	R	R	S

CASE 1 SHOWS A PATTERN OF DISAGREEMENT BETWEEN "SPAM" & "RELEVANT," WHILE CASE 4 SHOWS A PATTERN OF DISAGREEMENT BETWEEN RELEVANT & OTHER

EXERCISES & QUESTIONS

ltem #		2	3	4	5	6	7	8	9	10
Rater I	R	R	R	R	R	R	R	R	R	S
Rater 2	S	R	R	0	R	R	R	R	0	S
Rater 3	R	R	R	0	R	R	0	0	R	S
Rater 4	R	R	R	R	R	R	R	R	R	S
Rater 5	S	R	R	0	R	0	0	R	R	S

1. COMPUTE COHEN'S K FOR RATERS 3 § 5

2. REVISE THE CODING PROMPT TO ADDRESS PROBLEMS YOU DETECT; GIVE YOUR NEW CODING SCHEME TO TWO RATERS AND COMPUTE K TO SEE IF YOUR REVISIONS WORKED; BE PREPARED TO TALK ABOUT WHAT CHANGES YOU MADE 3. COHEN'S KAPPA IS SAID TO BE A VERY CONSERVATIVE MEASURE OF INTER-RATER RELIABILITY...CAN YOU EXPLAIN

WHY? WHAT ARE ITS LIMITATIONS AS YOU SEE THEM?

DO I HAVE TO DO THIS BY HAND?

□ NO, YOU COULD GO HERE:

http://faculty.vassar.edu/lowry/kappa.html