Predicate Logic: Syntax $\mathbf{2.6}$

Definition 1

- (i) If A is a predicate constant, of arity n, and each $t_1...t_n$ an individual constant or variable, then $A(t_1, ..., t_n)$ is a wff.
- If φ is a wff, then so is $\neg \varphi$. (ii)
- (iii) If φ and ψ are wffs, then so are $(\varphi \land \psi)$, $(\varphi \lor \psi)$, $(\varphi \to \psi)$, and $(\varphi \leftrightarrow \psi)$.
- If φ is a wff and x a variable, then $\forall x \varphi$ and $\exists x \varphi$ are wffs. (iv)
- (\mathbf{v}) Nothing else is a wff.

Definition 2

If $\forall x \psi$ is a sub-formula of φ , then ψ is called the **scope** of this occurrence of the quantifier $\forall x \text{ in } \varphi$. Same definition for $\exists x$.

Definition 3

- (a)An occurrence of a variable x in the formula ϕ (which is not part of a quantifer) is called **free** if this occurrence of x is not in the scope of a quantifier $\forall x$ ou $\exists x$ occurring in ϕ .
- If $\forall x\psi$ (or $\exists x\psi$) is a sub-formula of ϕ and x is free in ψ , then this occurrence of x (b) is called **bound** by the quantifier $\forall x \text{ (or } \exists x)$.

Definition 4

A **sentence** is a formula with no free variable.

2.7**Predicate Logic: Semantics**

2.7.1**First Order Models** 2.7.2**Truth Definition**

Let $\llbracket \alpha \rrbracket_{\mathcal{M}}^{g}$ be the denotation of α in the model $\mathcal{M} = \langle D, I \rangle$ and with the assignment g.

 $\llbracket t \rrbracket_{\mathcal{M}}^g = I(t)$ if t is an individual constant $\llbracket t \rrbracket_{\mathcal{M}}^{g} = g(t)$ if t is a variable

$$\begin{split} & \llbracket P(t_1, \dots t_n) \rrbracket_{\mathcal{M}}^g = 1 \text{ iff } \langle \llbracket t_1 \rrbracket_{\mathcal{M}}^g, \dots \llbracket t_n \rrbracket_{\mathcal{M}}^g \rangle \in I(P). \\ \varphi \text{ and } \psi \text{ are wfss, } & \llbracket \neg \varphi \rrbracket_{\mathcal{M}}^g = 1 & \text{ iff } & \llbracket \varphi \rrbracket_{\mathcal{M}}^g = 0 \\ & \llbracket (\varphi \land \psi) \rrbracket_{\mathcal{M}}^g = 1 & \text{ iff } & \llbracket \varphi \rrbracket_{\mathcal{M}}^g = 1 & \text{ and } \llbracket \psi \rrbracket_{\mathcal{M}}^g = 1 \\ & \llbracket (\varphi \lor \psi) \rrbracket_{\mathcal{M}}^g = 1 & \text{ iff } & \llbracket \varphi \rrbracket_{\mathcal{M}}^g = 1 & \text{ or } \llbracket \psi \rrbracket_{\mathcal{M}}^g = 1 \\ & \llbracket (\varphi \to \psi) \rrbracket_{\mathcal{M}}^g = 1 & \text{ iff } & \llbracket \varphi \rrbracket_{\mathcal{M}}^g = 0 & \text{ or } \llbracket \psi \rrbracket_{\mathcal{M}}^g = 1 \\ & \llbracket (\varphi \to \psi) \rrbracket_{\mathcal{M}}^g = 1 & \text{ iff } & \llbracket \varphi \rrbracket_{\mathcal{M}}^g = 0 & \text{ or } \llbracket \psi \rrbracket_{\mathcal{M}}^g = 1 \\ & \llbracket \exists y \ \varphi \rrbracket_{\mathcal{M}}^g = 1 \text{ iff there is a } d \in D \text{ s.t. } \llbracket \varphi \rrbracket_{\mathcal{M}}^{g[y/d]} = 1 \\ \end{split}$$
 milarly,
$$\begin{split} & \boxed{ \llbracket \forall y \ \varphi \rrbracket_{\mathcal{M}}^g = 1 \text{ iff for all } d \in D, \ \llbracket \varphi \rrbracket_{\mathcal{M}}^{g[y/d]} = 1 \\ \end{split}$$

 \sin

If

$$\llbracket \forall y \ \varphi \rrbracket_{\mathcal{M}}^{g} = 1 \text{ iff for all } d \in D, \ \llbracket \varphi \rrbracket_{\mathcal{M}}^{g[y/a]} = 1$$

Il φ is a sentence:

$$\llbracket \varphi \rrbracket_{\mathcal{M}} = 1$$
 iff there is an assignment g such that $\llbracket \varphi \rrbracket_{\mathcal{M}}^g = 1$