TD1 - Introduction to Formal Languages

February 4, 2025

- 1. Infer and describe in plain English the corresponding languages:
 - (a) $L_1 = \{c, ac, abc, bc, bac, baabaac, ababaac, \dots\}$ over $\Sigma_1 = \{a, b, c\}$.
 - (b) $L_2 = \{\varepsilon, a, ab, aabb, aaa, aaabb, aaaab, \ldots\}$ over $\Sigma_2 = \{a, b\}$.
 - (c) $L_3 = \{ab, abab, aaab, baab, bbbbab, \ldots\}$ over $\Sigma_3 = \{a, b\}$.
- 2. Let $\Sigma = \{a, b, c\}$. Give finite-state automata that recognise the following languages:
 - (a) $L_1 = \{aa, ab, bac\}.$
 - (b) $L_2 = \{\varepsilon\}.$
 - (c) $L_3 = \emptyset$.
 - (d) $L_4 = \Sigma^{\star}$.
- 3. Let $\Sigma = \{a, b, c\}$. Give finite state automata that accept the following languages:
 - (a) The set of words with an even length.
 - (b) The set of words where the number of occurrences of b is divisible by 3.
 - (c) The set of words ending with a b.
 - (d) The set of non-empty words not ending with a b.
 - (e) The set of words containing at least a b.
 - (f) The set of words containing at most a b.
 - (g) The set of words containing exactly one b.
 - (h) The set of words not containing any b.
 - (i) The set of words with an even length ending with *ab*.