Formal Languages and Linguistics Regular Languages Definition

Overview

Formal Languages

Regular Languages

Automata Properties Regular expressions Definition

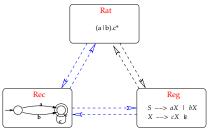
Formal Grammars

Formal complexity of Natural Languages

Sorbonne ;;;

Definition

- 1. a regular language can be defined by rational/regular expressions
- 2. a regular language can be recognized by a finite automaton
- 3. a regular language can be generated by a regular grammar



Sorbonne

Formal Languages and Linguistics Formal Grammars Examples

Overview

Formal Languages

Regular Languages

Formal Grammars Examples Definition Language classes

Formal complexity of Natural Languages

Sorbonne ;;;

Examples

Example I

$$\begin{array}{rrrrr} S & \rightarrow & AB \\ A & \rightarrow & aA \\ & \mid & b \\ B & \rightarrow & bBc \\ & \mid & \varepsilon \end{array}$$

- Rewriting system
- Auxiliary vocabulary (N for non-terminal)
- Start symbol (engendered language)
- Multiple derivations
- Syntactic tree

Formal Gramma

Examples

Example II

$$\begin{array}{rrrr} E & \rightarrow & E+E \\ & \mid & E\times E \\ & \mid & (E) \\ & \mid & 0\mid 1\mid 2\dots 8\mid 9 \end{array}$$

- Syntactic ambiguity
- Semantic interpretation

Sorbonne ;;; Nouvelle ;;;

Examples

Example III

NP	\rightarrow	Det N'
INF	\rightarrow	Del N
N′	\rightarrow	AdjP N'
N′	\rightarrow	Ν
N′	\rightarrow	N Cpt
AdjP	\rightarrow	Adj AdjP
AdjP	\rightarrow	Adj
Cpt	\rightarrow	P NP
Det	\rightarrow	the my
Ν	\rightarrow	cat friend
Adj	\rightarrow	large fierce
Prep	\rightarrow	of to

- ► X-bar theory
- Recursive rules
- Center-embedding

Formal Languages and Linguistics Formal Grammars Definition

Overview

Formal Languages

Regular Languages

Formal Grammars Examples Definition Language classes

Formal complexity of Natural Languages

Sorbonne ;;;

Formal grammar

Def. 12 ((Formal) Grammar)

A formal grammar is defined by $\langle \Sigma, N, S, P \rangle$ where

- Σ is an alphabet
- N is a disjoint alphabet (non-terminal vocabulary)
- $S \in V$ is a distinguished element of N, called the *axiom*
- P is a set of « production rules », namely a subset of the cartesian product (Σ ∪ N)*N(Σ ∪ N)* × (Σ ∪ N)*.

Sorbonne III Nouvelle III

Immediate Derivation

Def. 13 (Immediate derivation)

Let $\mathcal{G} = \langle \Sigma, N, S, P \rangle$ a grammar, $r \in P$ a production rule, such that $r : A \longrightarrow u$ with $u \in (\Sigma \cup N)^*$; $f, g \in (\Sigma \cup N)^*$ two "(proto-)words",

- f derives into g (immediate derivation) with the rule r(noted $f \xrightarrow{r} g$) iff $\exists v, w \text{ s.t. } f = vAw$ and g = vuw
- f derives into g (immediate derivation) in the grammar \mathcal{G} (noted $f \xrightarrow{\mathcal{G}} g$) iff $\exists r \in P \text{ s.t. } f \xrightarrow{r} g$.

Formal Languages and Linguistics Formal Grammars Definition

Derivation

Def. 14 (Derivation)

$$f \xrightarrow{\mathcal{G}_*} g$$
 if $f = g$ or
 $\exists f_0, f_1, f_2, ..., f_n$ s.t.
 $f_0 = f$
 $f_n = g$
 $\forall i \in [1, n] : f_{i-1} \xrightarrow{\mathcal{G}} f_i$

Sorbonne ;;;

Engendered language

Def. 15 (Language engendered by a word)
Let
$$f \in (\Sigma \cup N)^*$$
.
 $L_{\mathcal{G}}(f) = \{g \in X^*/f \xrightarrow{\mathcal{G}_*} g\}$

Def. 16 (Language engendered by a grammar)

The language engendered by a grammar \mathcal{G} is the set of words of Σ^* derived from the axiom.

$$L_{\mathcal{G}} = L_{\mathcal{G}}(S)$$

Formal Languages and Linguistics Formal Grammars Language classes

Overview

Formal Languages

Regular Languages

Formal Grammars Examples Definition Language classes

Formal complexity of Natural Languages

Sorbonne ;;;

Formal Languages and Linguistics Formal Grammars Language classes

Principle

Define language families on the basis of properties of the grammars that generate them :

- 1. Four classes are defined, they are included one in another
- A language is of type k if it can be recognized by a type k grammar (and thus, by definition, by a type k 1 grammar); and cannot be recognized by a grammar of type k + 1.

Chomsky's hierarchy

type 0 No restriction on $P \subset (X \cup V)^* V (X \cup V)^* \times (X \cup V)^*.$

- type 1 (context-sensitive grammars) All rules of P are of the shape (u_1Su_2, u_1mu_2) , where u_1 and $u_2 \in (X \cup V)^*$, $S \in V$ and $m \in (X \cup V)^+$.
- type 2 (*context-free* grammar) All rules of P are of the shape (S, m), where $S \in V$ and $m \in (X \cup V)^*$.
- type 3 (regular grammars) All rules of P are of the shape (S, m), where $S \in V$ and $m \in X.V \cup X \cup \{\varepsilon\}$.

Formal Languages and Linguistics └─ Formal Grammars

Language classes

Examples

type 3: $S \rightarrow aS \mid aB \mid bB \mid cA$ $B \rightarrow bB \mid b$ $A \rightarrow cS \mid bB$

> Sorbonne III Nouvelle III

Language classes

Examples

type 3: $S \rightarrow aS \mid aB \mid bB \mid cA$ $B \rightarrow bB \mid b$ $A \rightarrow cS \mid bB$

type 2: $E \rightarrow E + T \mid T, T \rightarrow T \times F \mid F, F \rightarrow (E) \mid a$

Sorbonne ;;;

Formal Languages and Linguistics └─Formal Grammars

Language classes

Example 1 type 0

Type 0: $S \rightarrow SABC \quad AC \rightarrow CA \quad A \rightarrow a$ $S \rightarrow \varepsilon \qquad CA \rightarrow AC \quad B \rightarrow b$ $AB \rightarrow BA \qquad BC \rightarrow CB \quad C \rightarrow c$ $BA \rightarrow AB \qquad CB \rightarrow BC$ generated language :

Formal Languages and Linguistics └─Formal Grammars

Language classes

Example 1 type 0

Type 0: $S \rightarrow SABC$ $AC \rightarrow CA$ $A \rightarrow a$ $S \rightarrow \varepsilon$ $CA \rightarrow AC$ $B \rightarrow b$ $AB \rightarrow BA$ $BC \rightarrow CB$ $C \rightarrow c$ $BA \rightarrow AB$ $CB \rightarrow BC$

generated language : words with an equal number of a, b, and c.

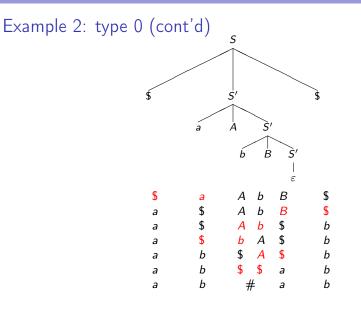
Sorbonne III Nouvelle Formal Languages and Linguistics Formal Grammars Language classes

Example 2: type 0

Sorbonne ;;;

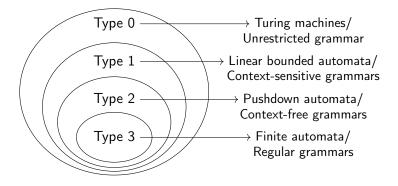
-Formal Grammars

Language classes



Sorbonne III Nouvelle III

The Chomsky-Schützenberger hierarchy



Sorbonne III Nouvelle

Remarks

- Type 0 (Turing-recognizable) = recursively enumerable languages
 Type 1 (Turing decidable) = recursive languages
 - Type 1 (Turing-decidable) = recursive languages
- There are others ways to classify languages,
 - either on other properties of the grammars;
 - or on other properties of the languages
- Nested structures are preferred, but it's not necessary

The parsing problem: finding derivations

- Given a grammar G on some alphabet Σ ...
- The parsing problem for G:

Given some w ∈ Σ*,
what are the derivations (if any) of w in G?
(Solving the parsing problem for G entails solving the

recognition problem for $\mathcal{L}(G)$.)

Syntactic complexity vs semantic expressivity

- Context-free grammars are commonly used to describe the syntax of many logical languages (e.g., PL, FOL), some programming languages, and parts of NL (→ Day 2).
- Untyped λ-calculus: CF syntax, Turing-complete semantics. "How is this possible?"
- ► → The syntactic complexity and the semantic expressivity of interpreted languages are two distinct notions.
- Jot (https://en.wikipedia.org/wiki/Iota_and_Jot) is {0,1}*, a regular language, compositionally interpreted as a Turing-complete language.

The recognition/parsing problems are very general

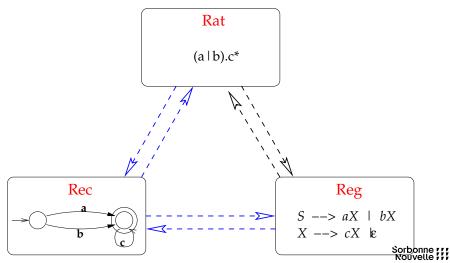
- Consider any binary ("yes/no") problem P and see it as the set of inputs for which the answer is positive.
- Let str be a linearisation function for the possible inputs of P, and L = {str(in) | in ∈ P}.
- Solving *P* is equivalent to the recognition problem for *L*.
- More generally, any computable function f can be encoded as a grammar s.t. after parsing the input w, the output f(w) can be read off the derivation.
- ➤ One can compute "syntactically": a grammar is a program. (The parser is the machine that runs it.)
- The formalism of unrestricted grammars is a Turing-complete programming language. (syntactically regular?) Sort

Sorbonne III Nouvelle III

-Formal Grammars

Language classes

Back to regular languages



Let's play with grammars

For each of the following grammars, give the generated language, and the type they have in Chomsky's hierarchy.

Sorbonne

Let's play with grammars (cont'd)

Give a contex-free grammar that generates each of the following languages (alphabet $\Sigma = \{a, b, c\}$).

$$\begin{array}{l} L_{0} = \{w \in X^{*} / w = a^{n} ; n \geq 0\} \\ L_{0}' = \{w \in X^{*} / w = a^{n}b^{n}ca ; n \geq 0\} \\ L_{1} = \{w \in X^{*} / w = a^{n}b^{n}c^{p}; n > 0 \text{ et } p > 0\} \\ L_{2} = \{w \in X^{*} / w = a^{n}b^{n}a^{m}b^{m}; n, m \geq 1\} \\ L_{3}' = \{w \in X^{*} / |w|_{a} = |w]_{b}\} \\ L_{3} = \{w \in X^{*} / |w|_{a} = 2|w]_{b}\} \\ L_{4} = \{w \in X^{*} / \exists x \in X^{*} \text{ tq } w = x\overline{x}\} \\ L_{5} = \{w \in X^{*} / w = \overline{w}\} \end{array}$$

Sorbonne III Nouvelle